Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/137522
Campo DC Valoridioma
dc.contributor.authorLara-Abelenda, Francisco J.en_US
dc.contributor.authorChushig-Muzo, Daviden_US
dc.contributor.authorPeiro-Corbacho, Pabloen_US
dc.contributor.authorWagner, Ana M.en_US
dc.contributor.authorGranja, Conceicaoen_US
dc.contributor.authorSoguero-Ruiz, Cristinaen_US
dc.date.accessioned2025-05-02T07:20:15Z-
dc.date.available2025-05-02T07:20:15Z-
dc.date.issued2025en_US
dc.identifier.issn0169-2607en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/137522-
dc.description.abstractBackground and objective: Type 1 Diabetes (T1D) is an autoimmune disease that requires exogenous insulin via Multiple Daily Injections (MDIs) or subcutaneous pumps to maintain targeted glucose levels. Despite the advances in Continuous Glucose Monitoring (CGM), controlling glucose levels remains challenging. Large Language Models (LLMs) have produced impressive results in text processing, but their performance with other data modalities remains unexplored. The aim of this study is three-fold. First, to evaluate the effectiveness of LLM-based models for glucose forecasting. Second, to compare the performance of different models for predicting glucose in T1D individuals treated with MDIs and pumps. Lastly, to create a personalized approach based on patient-specific training and adaptive model selection. Methods: CGM data from the T1DEXI study were used for forecasting glucose levels. Different predictive models were evaluated using the mean absolute error (MAE) and the root mean squared error and considering the Prediction Horizons (PHs) of 60, 90, and 120 min. Results: For short-term PHs (60 and 90 min), the personalized approach achieved the best results, with an average MAE of 15.7 and 20.2 for MDIs, and a MAE of 15.2 and 17.2 for pumps. For long-term PH (120 min), TIDE obtained an MAE of 19.8 for MDIs, whereas Patch-TST obtained a MAE of 18.5. Conclusion: LLM-based models provided similar MAE values to state-of-the-art models but presented a reduced variability. The proposed personalized approach obtained the best results for short-term periods. Our work contributes to developing personalized glucose prediction models for enhancing glycemic control, reducing diabetes-related complications.en_US
dc.languageengen_US
dc.relation.ispartofComputer Methods and Programs in Biomedicineen_US
dc.sourceComputer Methods And Programs In Biomedicine [ISSN 0169-2607], v. 265, (Junio 2025)en_US
dc.subject.otherLarge Language Modelsen_US
dc.subject.otherGlucose Forecastingen_US
dc.subject.otherTransformersen_US
dc.subject.otherGpten_US
dc.subject.otherTime Series Forecastingen_US
dc.subject.otherContinuous Glucose Monitoren_US
dc.subject.otherType 1 Diabetesen_US
dc.titlePersonalized glucose forecasting for people with type 1 diabetes using large language modelsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cmpb.2025.108737en_US
dc.identifier.isi001464793700001-
dc.identifier.eissn1872-7565-
dc.relation.volume265en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.contributor.daisngid56018541-
dc.contributor.daisngid2050061-
dc.contributor.daisngid59795114-
dc.contributor.daisngid127153-
dc.contributor.daisngid15680807-
dc.contributor.daisngid3658643-
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Lara-Abelenda, FJ-
dc.contributor.wosstandardWOS:Chushig-Muzo, D-
dc.contributor.wosstandardWOS:Peiro-Corbacho, P-
dc.contributor.wosstandardWOS:Wäagner, AM-
dc.contributor.wosstandardWOS:Granja, C-
dc.contributor.wosstandardWOS:Soguero-Ruiz, C-
dc.date.coverdateJunio 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr1,189
dc.description.jcr4,9
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameWägner, Anna Maria Claudia-
Colección:Artículos
Adobe PDF (2,43 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.