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 A B S T R A C T

Background and objective: Type 1 Diabetes (T1D) is an autoimmune disease that requires exogenous insulin 
via Multiple Daily Injections (MDIs) or subcutaneous pumps to maintain targeted glucose levels. Despite the 
advances in Continuous Glucose Monitoring (CGM), controlling glucose levels remains challenging. Large 
Language Models (LLMs) have produced impressive results in text processing, but their performance with other 
data modalities remains unexplored. The aim of this study is three-fold. First, to evaluate the effectiveness 
of LLM-based models for glucose forecasting. Second, to compare the performance of different models for 
predicting glucose in T1D individuals treated with MDIs and pumps. Lastly, to create a personalized approach 
based on patient-specific training and adaptive model selection.
Methods: CGM data from the T1DEXI study were used for forecasting glucose levels. Different predictive 
models were evaluated using the mean absolute error (MAE) and the root mean squared error and considering 
the Prediction Horizons (PHs) of 60, 90, and 120 min.
Results: For short-term PHs (60 and 90 min), the personalized approach achieved the best results, with an 
average MAE of 15.7 and 20.2 for MDIs, and a MAE of 15.2 and 17.2 for pumps. For long-term PH (120 min), 
TIDE obtained an MAE of 19.8 for MDIs, whereas Patch-TST obtained a MAE of 18.5.
Conclusion: LLM-based models provided similar MAE values to state-of-the-art models but presented a reduced 
variability. The proposed personalized approach obtained the best results for short-term periods. Our work 
contributes to developing personalized glucose prediction models for enhancing glycemic control, reducing 
diabetes-related complications.
1. Introduction

Type 1 Diabetes (T1D) is an autoimmune disease that destroys the 
insulin-producing cells in the pancreas, producing insulin deficiency, 
which is the hormone that stimulates glucose transport from the blood-
stream to cells [1]. To maintain glucose levels within a target range 
([70, 180] mg/dl), the main therapy in T1D patients is the administra-
tion of exogenous insulin [2] either by Multiple Daily Injections (MDIs) 
or by continuous subcutaneous insulin infusions with a pump [2].

MDIs are administered using pens or syringes, involving both basal 
(long-acting) and bolus (rapid-acting) insulin [3]. By contrast, pumps 
are wearable devices containing rapid-acting insulin that can sup-
ply both basal and bolus insulin continuously to the subcutaneous 
tissue [4]. Although both treatments aim to maintain glucose concen-
trations within a target range, pumps have proven to be more efficient 
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in insulin delivery compared to MDIs [4]. These therapies combined 
with Continuous Glucose Monitoring (CGM) devices have led to better 
glycemic control, thus improving T1D patient’s quality of life. CGM 
devices have also facilitated data collection, which is promising in 
developing personalized and data-driven models for glucose prediction, 
supporting clinical decision-making and glucose self-management [5]. 
Accurate glucose predictions may help people to make informed deci-
sions about insulin dosing, diet, and exercise, leading to more effective 
glucose control [6].

Artificial Intelligence (AI) models based on Artificial Neural Net-
works (ANNs) architectures have proven excellent results for forecast-
ing glucose in previous studies [7–9]. In particular, Recurrent Neural 
Networks (RNNs) and Long Short-Term Memory Networks (LSTMs) 
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have been extensively used owing to their capability to capture short-
term and long-term temporal dependencies in CGM data and are con-
sidered as baseline models in previous studies [10,11]. Despite their 
extensive usage, these methods often face limitations in capturing 
complex patterns inherent to time series. To address this, novel and 
sophisticated models based on convolutional neural networks [12], 
transformers [13,14] and Multiple Layer Perceptron (MLP)-based mod-
els (such as the TSMixer [15], TiDE [16], N-HiTS [17], NBEATS [18]) 
have shown excellent results for long-term forecasting [16,19]. How-
ever, for glucose forecasting, limited research has been conducted using 
these models. NBEATS and N-HiTS have obtained considerably better 
results compared with more traditional models (e.g., ARIMA, linear 
regression, RNNs, and LSTMs) for glucose forecasting [20]. In contrast, 
TS-Mixer and TiDE have not yet been evaluated for glucose forecasting 
in the literature.

In recent years, Large Language Models (LLMs), originally designed 
for Natural Language Processing (NLP) tasks, have revolutionized the 
digital era and the way how humans interact with technology [21]. 
These models leverage vast amounts of text data to achieve unprece-
dented performance in NLP tasks and generative AI [21]. Thanks to 
their ability to capture complex and long-range dependencies, these 
models are promising to be used in other data modalities [22]. Sev-
eral studies have explored the capability and limitations of LLMs 
for time series forecasting, including Time-LLM [23], TimeGPT [24], 
aLLM4TS [25], Lag-llama [26] among others. Among these models, 
TimeGPT is the only foundational model tested in short-term glucose 
forecasting for pediatric patients [27], reaching state-of-the-art per-
formance. However, Time-LLM allows us to train with a small set of 
time series and requires fewer resources compared to other fine-tuned 
models, becoming promising for applications with scarce data.

In this study, we investigate the effectiveness of the LLM-based 
models for predicting glucose in patients diagnosed with T1D. Towards 
that end, we used glucose values belonging to people involved in the 
public dataset named Type 1 Diabetes EXercise Initiative (T1DEXI) [28]. 
The aim of this study is two-fold. First, we evaluated the effectiveness 
and performance of the LLM-based model named Time-LLM for fore-
casting glucose using CGM data. Second, we performed a comparative 
study of Time-LLM with other ANN-based models for predicting glu-
cose, distinguishing between two insulin treatment modalities: MDIs 
and insulin pumps. Three different Prediction Horizons (PHs) were 
considered, including 60, 90, and 120 min. We quantitatively evaluated 
the performance of the models using the average values for Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE) and Clarke 
Error Grid (CEG) analysis [29]. To create personalized models adapted 
to the CGM characteristics of participants, we follow two approaches:
(i) patient-specific training, where each model is exclusively trained 
with CGM data from the same participant; and (ii) adaptive model 
selection, where eight different models are evaluated for each partic-
ipant aiming to determine and select the best-fit model (measured by 
MAE). To our knowledge, this is one of the first studies proposing a 
personalized approach using LLM-based models to predict CGM time 
series data, comparing the performance of various models in T1D pa-
tients with different insulin administration methods (MDIs and pumps). 
In summary, our contributions are presented below. We introduce 
the application of Time-LLM for glucose forecasting, demonstrating its 
effectiveness for clinical applications. We also evaluate the feasibility 
of using LLMs with small datasets and without additional re-training, 
reducing computational time while achieving reasonable forecasting 
results. The source code and results for reproducibility can be accessed 
at the following link: github.com/ai4healthurjc/TimeLLM-CGM.

The rest of this paper is organized as follows: Section 2 presents 
the foundations of the models used for forecasting, the methodology 
followed and the dataset used, and the experimental setup; Section 3 
presents the forecasting results in different PHs and considering in-
dividuals treated with MDIs and insulin pump. The discussion and 
conclusions are presented in Sections 4 and 5, respectively.
2 
2. Methods

This section provides a comprehensive overview of the forecasting 
models used in this research, details the datasets employed, describes 
the proposed methodology for training the AI-based models (as illus-
trated in Fig.  1), and outlines the experimental setup in which the 
corresponding experiments were conducted.

2.1. Large language models for predicting time series

LLMs represent one of the most significant advancements in the 
field of AI in recent years. These models are based on transformer 
architectures [30], which are composed of encoder and decoder blocks 
as well as self-attention mechanisms. The encoder transforms input 
data into fixed-sized feature maps, whereas the decoder transforms 
these maps back into the input. The self-attention mechanism relates 
each input word to each other by establishing links between related 
words, identifying which previous tokens influence each generated 
token, thus capturing intricate dependencies and relationships within 
the text [30]. Generally, LLMs are trained on large text data, en-
compassing diverse domains and languages, to enhance their ability 
to generate human-like text, answer questions, and complete other 
language-related tasks. Among the most remarkable LLMs, we find 
the Generative Pre-trained Transformer (GPT) [31] created by OpenAI, 
Gemini (Google), Llama [32] (Meta), Mistral [33] (Mistral AI).

Although LLMs often produce impressive outputs, it remains to be 
explored how they perform in real-world scenarios with different data 
modalities. The application of LLMs for forecasting time series gathered 
considerable attention last year, as evidenced by recent studies [34–
36]. Most LLM-based models were trained on time series characterized 
by periodicity and tendency [35,36], but a few studies have explored 
their application to non-periodic, real-world time series, particularly in 
the context of clinical data. As a result, the development of LLM-based 
applications for diabetes-related data has become a relevant research 
topic in recent months. In the literature, LLM-models have been ex-
plored for different aspects of diabetes management, such as providing 
personalized support for users [37,38], making an early detection of 
T2DM [39] or forecasting glucose levels in pediatric patients [27]. In 
this study, we used the model called Time-LLM [23] due to its novelty, 
performance, and reduced computational time, which make it highly 
efficient compared to other methods. Traditional LLMs require large 
volumes of data and fine-tuning to reach competitive and reasonable 
results, which can lead to prolonged periods for training models and 
higher computational complexity. Time-LLM uses a reprogramming 
layer framework to address the need for large data, reducing time and 
computational costs, thus allowing to obtaining reasonable results with 
datasets with small and medium sizes.

Time-LLM introduces a reprogramming framework that combines the 
language knowledge (from pre-trained word embedding) and time 
series information via linear projection and multi-head cross-attention 
layers. It reprogrammed an existing LLM (e.g., GPT, Llama, BERT), 
called backbone, into a time series forecaster without requiring fine-
tuning, thus reducing computational costs for training. Specifically, 
given a sequence of observations 𝐗 ∈ R𝑁×𝑇  consisting of 𝑁 different 1-
dimensional variables across 𝑇  time steps, a LLM is reprogrammed 𝑓 (⋅)
to understand the input time series and accurately forecast 𝐻 future 
time steps, denoted by �̂� ∈ R𝑁×𝐻 . The aim is to minimize the mean 
squared error between the ground truth values 𝐘 and the predictions 
�̂�.

Before training Time-LLM, time series are normalized, segmented 
into patches, and embedded. These embedded patches are then repro-
grammed using learned text prototypes to align the source (time series) 
and the target (language model). Next, we enhance the LLM ability to 
reason over time series data by prompting it with these reprogrammed 
patches. The LLM processes this input to generate output representa-
tions, which are subsequently projected to produce the final forecast. 
The Time-LLM framework comprises four primary components:
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Fig. 1. A schematic diagram of workflow followed in the current work for predicting glucose values.
• Input patching : Each input sequence 𝐗(𝑖) is normalized via re-
versible instance normalization and segmented into consecutive 
overlapping or non-overlapping sequences of fixed length called
patches named 𝐗(𝑖)

𝑃 . This process aims to preserve local semantic 
information within each patch to construct a compact sequence 
of input tokens. Furthermore, it also works as a tokenization 
method, creating a compact sequence of input tokens, which 
helps reduce computational complexity. With these patches 𝐗(𝑖)

𝑃 , 
an embedding was built using a simple linear layer as the patch 
embedder, generating �̂�(𝑖)

𝑃 .
• Patch reprogramming : Patch embeddings are reconfigured into the 
representation space of the source data to align the modalities 
of time series and natural language, thereby activating the back-
bone’s capabilities (e.g., GPT, Llama, BERT) for processing time 
series. To address this challenge, �̂�(𝑖)

𝑃  is reprogrammed using 
pre-trained word embeddings 𝐄 ∈ R𝑉 ×𝐷 from the backbone 
model, where 𝑉  denotes the vocabulary size and 𝐷 is the hid-
den dimension of the backbone model. However, without prior 
knowledge of which source tokens are most relevant, using the 
full embedding matrix 𝐄 would create a large and potentially 
dense reprogramming space. To simplify this, authors in [23] used 
a linear approach to extract a smaller subset of text prototypes, 
represented as 𝐄′ ∈ R𝑉 ′×𝐷, where 𝑉 ′ ≪ 𝑉 . The text prototypes 
are designed to learn associations between language cues, and 
then these are combined to represent local patch information. 
Importantly, this process occurs entirely within the pre-trained 
space of the LLM, ensuring compatibility and efficiency. This 
method also enables the adaptive selection of relevant informa-
tion using a multi-head cross-attention layer, and then this result 
is linearly projected to align the hidden dimensions with the 
backbone model, producing 𝐎(𝑖).

• Prompt-as-prefix: Prompting is an effective method for
task-specific activation of LLMs. The prompts are used as prefixes 
to enrich the input context and guide the transformation of repro-
grammed time series patches. It enhances the LLM’s adaptability 
to downstream tasks while complementing patch reprogramming. 
In the Patch-as-Prefix approach, language models are prompted to 
predict time series values using natural language, but this method 
struggles with processing high-precision numerals and requires 
complex post-processing. On the other hand, the Prompt-as-Prefix 
approach addresses these challenges by integrating three crucial 
components: (i) dataset context; (ii) task instructions; and (iii)
input statistics. The dataset context provides the LLM with critical 
background information about the input time series, which often 
3 
varies significantly across different domains. Task instructions 
play a key role in guiding the LLM to transform patch embeddings 
for specific tasks.

• Output projection: Following the packing and feed-forwarding of 
prompt and patch embeddings through the frozen LLM, the pre-
fixal part is discarded, and the output representation is obtained 
𝑂(𝑖). Subsequently, the output representation is flattened and 
linearly projected to obtain the final forecast �̂�(𝑖).

2.2. Forecasting models based on neural networks

RNNs have been extensively utilized for sequence modeling tasks, 
including sequence forecasting and sequence labeling [40]. RNNs are 
characterized by cycles that feed activations from previous time steps 
back into the network to inform decisions about the current input. 
These activations, stored in the network’s internal state, provide tempo-
ral contextual information. However, training conventional RNNs with 
gradient-based back-propagation often faces vanishing and exploding 
gradient problems [41]. LSTM networks seek to address these problems 
by including units called memory blocks in the recurrent hidden layer, 
which can control the flow of information [42]. LSTMs have been 
previously used in forecasting applications [42,43], and they have 
demonstrated reasonable results in glucose forecasting [42,44].

Despite the extended usage of RNNs and LSTMs, several studies have 
shown that convolutional architectures can outperform these models 
(in some applications) [40]. By skipping temporal connections, causal 
convolution filters can be applied to larger time spans while remaining 
computationally efficient. The temporal convolutional network (TCN) 
uses convolutional layers with dilated convolutions to capture temporal 
dependencies across a sequence. By stacking multiple convolutional 
layers, TCNs can handle long input sequences and produce accurate 
forecasts by mitigating vanishing gradient problems. TCN has been used 
to forecast series in multiple applications [45,46], including glucose 
forecasting where it has outperformed the results of LSTMs [47,48].

The emergence of transformer-based models, initially proposed for 
NLP tasks, has been gaining importance for the analysis of multiple data 
modalities and domains [49,50], including glucose classification and 
forecasting [51–53]. Transformers replace RNN cells with self-attention 
layers, point-wise fully connected layers, and positional encoding, seek-
ing to capture long-range dependencies in sequences. PatchTST [14] is 
a transformer-based model that enhances locality and captures seman-
tic information not available at the point level by aggregating time steps 
into subseries-level called patches. Although PatchTST has not yet been 
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used in glucose forecasting, it has outperformed RNNs in time series 
forecasting in other studies [54].

Despite recent progress in transformer-based models, they face dif-
ficulties in training due to their excessive computational complexity. 
For example, both attention and fully connected layers scale quadrat-
ically in memory and computational cost with the forecasting hori-
zon length. To overcome these limitations, novel MLP-based models 
have been developed [15,17]. MLP-based models are models with-
out any self-attention mechanisms, recurrent, or convolutional mecha-
nisms, but they use statistical information for forecasting. In this paper, 
we evaluated three MLP-based models: TSMixer [15], NHiTS [17], 
and TiDE [16]. We selected these models based on their novelty and 
performance in time series forecasting in other domains [40,55].

TSMixer [15] is an MLP-based model that jointly learns temporal 
and cross-sectional representations of the time series by iteratively 
combining time and feature information of stacked mixing layers. 
TiDE [16] starts by encoding the past time series along with any 
associated covariates using dense MLPs. This encoding process creates 
a dense hidden representation filled with learned features that best 
describe the data characteristics. Then, another set of dense MLPs 
uses this hidden representation to generate future forecastings. The 
temporal decoder refines these forecastings by adapting them to future 
covariates. Additionally, residual connections are introduced to provide 
model regularization, preventing overfitting and reducing the risk of 
vanishing gradient problems [16]. NHITS [17], based on NBEATS [18], 
performs local nonlinear projections onto basis functions across multi-
ple blocks. Each block consists of an MLP with ReLU non-linearities, 
which learns to produce coefficients for the backcast and forecast 
outputs of its basis. The backcast output is used to clean the inputs 
of subsequent blocks, while the forecasts are combined to form the 
final forecasting. Moreover, the blocks are grouped in stacks, each 
specialized in learning different characteristics of the data using a 
different set of basis functions.

2.3. Dataset description and preprocessing

In this work, we employed data belonging to a total of 497 adults 
with T1D from the dataset named T1DEXI [28], which was a random-
ized controlled trial study that analyzed the impact of different types 
of physical exercise on glucose levels. The participants were residents 
from the United States aged over 18 years with T1D for at least 2 years. 
Data were collected during the years 2019 and 2020 in compliance 
with the ethical principles that have their origin in the Declaration of 
Helsinki and with the standards of Good Clinical Practice. Adult par-
ticipants were randomly assigned to six structured aerobic, interval, or 
resistance exercise sessions during four weeks. CGM data were obtained 
using either personal Dexcom G6 CGM or blinded Dexcom G6 CGM, 
with measurements taken at 5-minute intervals. Participants followed 
an intensive insulin regimen using either pumps or MDIs. Although 
several types of insulin pumps were utilized in the T1DEXI [28], we 
only considered the T-slim X2 with Control-IQ pump, a hybrid closed-
loop system with automated insulin delivery, because it was the most 
widely used in the original study. The selected pump regimen included 
190 participants, while the MDI regimen had 79 participants.

Regarding the preprocessing stage, each participant’s CGM sequence 
consists of 28 days of data. However, we only used for training and 
validation a subsequence of the CGM data where the total amount 
of consecutive missing values did not reach one hour (60 min). This 
approach aimed to avoid having a large number of consecutive missing 
values, which can adversely affect the performance of the models to be 
evaluated. Then, we dealt with any remaining missing values in this 
subsequence using linear interpolation [56]. It is worth mentioning that 
our goal was not to validate the robustness of imputation techniques; 
on the contrary, we selected CGM sequences with the most available 
information to reduce the impact of any interpolation method. More-
over, this approach has been implemented in other forecasting models 
that used LLM, such as in [27].
4 
After the interpolation, we continued to preprocess the time series 
by changing the sampling frequency from 5 min to 15 min. This change 
in frequency is based on improving the generalization of this imple-
mentation. Since one of the goals is to implement our methodology in a 
real-world application, the possibility of using CGM data extracted from 
any CGM device is very important. While most CGM devices can record 
glucose values at a 5-minute sampling frequency, some devices, like the 
Abbott FreeStyle Libre, resample the data every 15 min by averaging 
the 1-minute measurements [57]. The Abbott FreeStyle Libre is one of 
the most popular CGM devices [58]. Moreover, although CGM devices 
that record data at 15-minute intervals can be resampled to 5-minute 
intervals, the reverse conversion is more accurate. This is because 
downsampling a time series is generally more reliable than upsampling. 
Lastly, computational time and resources are critical factors for real-
world implementation. By reducing the sampling rate, we can decrease 
computational time and resource usage while preserving the period 
analyzed by the model and the prediction horizon. Therefore, we chose 
to resample our glucose measurements and train our models using 
15-minute interval data. This resampling approach has been used in 
several studies across the literature [59,60].

2.4. Methodology

This study aimed to design a methodology for training personalized 
models by selecting the most suitable model for a person from a set of 
eight data-driven models. Consequently, instead of selecting the same 
model (e.g., LSTM or TCN) for all participants, we select the best option 
for each user from a set of eight different models, including LSTM, 
TCN, N-HITS, TiDE, TS-Mixer, PatchTST, Time-LLM-GPT, and Time-
LLM-BERT. To achieve this, the CGM data of each participant is divided 
into training and testing splits. These splits are generated from different 
periods of the same participant’s CGM data. A detailed description of 
how the training and testing division is performed is shown in Fig. 
2. The amount of data used in the training and testing time series is 
determined based on five factors: the model input size (𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒), the 
number of cross-validation windows (𝑤), the number of test iterations 
(𝑛), the step size (𝑠), and the PH.

The length of the training set is calculated as follows:
Train set length = 𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 +𝑤 ⋅ 𝑠𝑡𝑟𝑎𝑖𝑛 + 𝑃𝐻.

Similarly, the length of the test set is determined by:
Test set length = 𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 + 𝑛 ⋅ 𝑠𝑡𝑒𝑠𝑡 + 𝑃𝐻.

The selected 𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 was determined through experimentation. 
We tested several intervals, including 48, 36, 24, and 12 h. Ultimately, 
the parameter 𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 was fixed at 24 h as it provided the optimal 
balance between prediction accuracy and computational efficiency. 
Extending the input time frame beyond 24 h resulted in an exponen-
tial increase in computation time, which was deemed impractical for 
real-world applications.

The parameter 𝑤 determines the number of cross-validation win-
dows in which the models are evaluated to accurately identify the 
model (between the 8 options) best suited for each user, along with its 
optimal set of hyperparameters. To ensure that the models perform well 
with a specific set of hyperparameters across different time intervals, 
a relatively large 𝑤 was selected, specifically 𝑤 = 50. In contrast, 
the parameter 𝑛 represents the number of test iterations where the 
model performance is assessed. We decided to evaluate the model over 
5 time intervals. This choice reflects our aim to analyze the model’s 
performance across distinct time spans while minimizing computational 
resource requirements.

Then, 𝑠 determines the displacement of each one of the 𝑤 cross-
validation windows for the training and the 𝑛 test iterations. Since 
the training set contains a high number of 𝑤, we aimed to ensure 
the methodology remains feasible for real-world implementation. To 
achieve this, we selected a training sample duration (𝑠 ) of 15 min. 
train
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Fig. 2. Schematic diagram of the workflow followed to train the artificial intelligence models for each user. The process involves selecting the subsequence of the CGM data with 
the least missing values, dividing the data into training and testing sets, and training/evaluating models using various windows of the same time series.
On the other hand, in the test set, the value 𝑤 is smaller because it is 
preferable to evaluate the mode in fewer iterations, but more separated 
from each other. As a result, to evaluate the performance of the models 
across multiple timespans, we increased the 𝑠test value, selecting 2 h. 
Therefore, we evaluated the model during five time iterations, each 
separated by 2 h.

Finally, we evaluated the performance of all the models, including 
the personalized approach, across three different PHs: 60 min, 90 min, 
and 120 min. The choice of PH directly impacts the size of both 
the training and testing datasets, as these are adjusted according to 
the specific PH being evaluated. To evaluate the models’ robustness 
and adaptability, we assessed their performance across multiple PHs, 
reflecting the varying requirements of real-world scenarios.

In conclusion, this pipeline processes a time series of glucose data, 
which is divided into training and testing partitions based on the previ-
ously described parameters. Therefore, the training set consists of 37.5, 
38, and 38.5 h for the three PHs, respectively, while the test set includes 
35, 35.5, and 36 h for the same three PH. Using the training partition, 
we trained eight models through cross-validation with 50 windows. 
For the personalized approach, we selected a different model for each 
user, choosing the one that achieved the best performance across the 
50 cross-validation windows computed from the training set. Finally, 
these models, along with the personalized approach, were evaluated 
across the 5 iterations of the test set. Following this procedure, the 
computational time is significant only during the initial training phase, 
5 
as the models do not need to be retrained. Once a model is trained 
and assigned to each user, which demands substantial computational 
resources and time, subsequent predictions are computed in just a 
few seconds since the model is not retrained. Moreover, the use of 
Time-LLM results in a significant reduction in computational time 
compared to other approaches, such as Time-GPT. This methodology 
was consistently applied to all participants, from both datasets (MDIs 
or insulin pumps), ensuring that the approach remained adaptable and 
effective for varying treatment modalities.

2.5. Experimental setup

In this study, eight models were used to forecast glucose levels 
using CGM data from MDI-treated patients and insulin pumps. For 
the six state-of-the-art models, the time series data were fed into the 
models without performing explicit feature engineering. Instead, a 24-
hour window of data was selected as the input_size, and Min-Max 
normalization was applied before the training. In contrast, for the LLM-
based models, the preprocessing involved segmenting the time series 
data into normalized patches and embedding the sequences, as detailed 
in Section 2.1.

For each one of the eight models, we explored several hyperpa-
rameter values (detailed in Table  1) for training and selected those 
that provided superior performance (measured by MAE) in the valida-
tion subset. The validation subset is composed of 50 cross-validation 
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Table 1
Summary of hyperparameters evaluated for different forecasting models.
 Model Hyperparameters Values/options  
 LSTM hidden layer size (encoder) 50, 100, 200, 300  
 number of layers (encoder) 1, 2, 3, 4  
 context size 5, 10, 50  
 hidden layer size (decoder) 50, 100, 200, 300  
 learning rate 0.0001, 0.001, 0.01, 0.1  
 batch size 3, 6, 10  
 TCN hidden layer size (encoder) 50, 100, 200, 300  
 context size 5, 10, 50  
 hidden layer size (decoder) 64, 128, 256  
 learning rate 0.0001, 0.001, 0.01, 0.1  
 batch size 3, 6, 10  
 N-HiTS size of the windows [2, 2, 1], [1, 1, 1], [2, 2, 2],  
 [4, 4, 4], [8, 4, 1], [16, 8, 1] 
 stack’s coefficients [168, 24, 1], [24, 12, 1],  
 [180, 60, 1], [60, 8, 1],  
 [40, 20, 1], [1, 1, 1]  
 learning rate 0.0001, 0.001, 0.01, 0.1  
 batch size 3, 6, 10  
 TiDE hidden size 256, 512, 1024  
 decoder output dimension 8, 16, 32  
 temporal decoder dimension 32, 64, 128  
 number encoder layers 1, 2, 3  
 number decoder layers 1, 2, 3  
 lower temporal projected dim 4, 8, 16  
 dropout 0.0, 0.1, 0.2, 0.3, 0.5  
 layernorm True, False  
 learning rate 0.0001, 0.001, 0.01, 0.1  
 batch size 3, 6, 10  
 TS-Mixer number of blocks 1, 2, 4, 6, 8  
 dropout 0.3, 0.6, 0.9  
 feed-forward layers in MLP 32, 64, 128  
 batch size 3, 6, 10  
 learning rate 0.0001, 0.001, 0.01, 0.1  
 Patch-TST encoder layers 2, 4, 8  
 hidden layer size 16, 128, 256  
 number heads 4, 16, 32  
 patch length 16, 24, 36  
 learning rate 0.0001, 0.001, 0.01, 0.1  
 batch size 3, 6, 10  
 Time-LLM-BERT patch length 16, 24, 36  
 learning rate 0.0001, 0.001, 0.01, 0.1  
 batch size 3, 6, 10  
 Time-LLM-GPT patch length 16, 24, 36  
 learning rate 0.0001, 0.001, 0.01, 0.1  
 batch size 3, 6, 10  

windows with a stride of 15 min. To determine the best hyperparam-
eter values in the validation subset, we used the tool raytune [61] 
that is used for distributed hyperparameter tuning and includes effi-
cient search algorithms. For each model, we conducted 100 different 
combinations using a Bayesian optimizer. Due to computational con-
straints, we were unable to evaluate as many hyperparameters as 
desired for Time-LLM. To maintain consistency in time series length, 
we selected the 50 participants with the largest CGM from each cohort 
(i.e., participants who used MDIs or pumps), resulting in a total of 100 
participants.

To quantitatively evaluate the performance of forecasting models, 
we used the figures of merit MAE and RMSE, which are defined as 
follows. 
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where 𝑇𝑁  is the number of measurements in a PH, and �̂�𝑖 and 𝑦𝑖
denotes the predicted and real value at time 𝑡. Both MAE and RMSE 
6 
measure the errors between predicted and real values, being always 
positive values, and with 0 indicating accurate forecastings with no 
error.

To evaluate the performance of the models under critical conditions, 
such as episodes of hypoglycemia or hyperglycemia, we used the CEG 
plot. It is a tool used to visualize and quantify the discrepancies 
between predicted values by a model (y-axis) and reference values (x-
axis). It is divided into five zones (A–E), where values within zones A 
and B are considered clinically acceptable, while those in zones C–E 
are potentially dangerous due to the risk of clinically significant errors. 
Therefore, for a model to perform well, almost all the points must 
be placed within the A and B zones. As a result, we used the CEG 
to analyze the number of points that fall in A–B zones, which is a 
key indicator of prediction errors and the performance of forecasting 
models.

In addition, we used boxplots to analyze the distributions of the er-
rors for each model, including the personalized approach. Furthermore, 
we performed the Wilcoxon test [62] to compare the personalized 
model with the others, assessing whether there were statistically signifi-
cant differences in performance. The Wilcoxon test is a non-parametric 
statistical test used to compare two paired groups without assuming 
a normal distribution. It evaluates whether the median differences 
between paired observations are significantly different from zero. As a 
consequence, it is perfect to assess differences in performance metrics, 
such as MAE, between two models in machine learning studies [63]. 
This combination of visualization and statistical testing provided a 
comprehensive evaluation of the models’ results.

3. Results

This section presents the forecasting results based on CGM data 
collected from participants using either MDI or insulin pumps for their 
treatment. These results are presented for three different PHs: 60, 
90, and 120 min. Finally, we analyze the errors generated by the 
models during CGM forecasting and highlight key insights gained from 
comparing the performance of all models across both cohorts (MDI and 
pump users).

3.1. Forecasting results in participants using multiple daily injections

In this subsection, we present the forecasting results of models 
trained using CGM data of participants who used MDIs as their insulin 
administration method. Table  2 presents the results of different models 
and evaluated in different PHs, including 60, 90, and 120 min. All 
models exhibit reasonable performance for the three PHs in average 
terms, with 15.7 ≤MAE≤ 24.3 (60 min), 20.2 ≤MAE≤ 25.9 (90 min), 
and 19.8 ≤MAE≤ 29.6 (120 min). It is important to indicate that when 
the STD is higher than the mean MAE or RMSE, it does not imply that 
the MAE or RMSE has negative values. Instead, it indicates the inter-
patient variability of predicted values of glucose. For some individuals, 
the forecasting is accurate, resulting in lower MAE and RMSE values, 
whereas for others, the forecasting models perform worse, leading to 
higher MAE and RMSE values. While intra-patient variability reflects 
the glucose dynamics for a specific patient, inter-patient variability 
indicates how glucose concentrations of T1D patients vary significantly 
from patient to patient within a given population [64]. The inter-
subject variability and multiple factors such as exogenous insulin, sleep 
disturbances, and physical exercise make glucose predictions complex 
and challenging, causing less accurate values in some scenarios.

Note that the personalized approach achieved the lowest MAE in 
mean and standard deviation (STD) for the 60-minute and 90-minute 
PHs, with 15.7 ± 12.5 and 20.2 ± 14.2, respectively. For the PH 
of 120 min, TiDE achieved the best performance, with an MAE of 
19.8 ± 14.2. By comparing the LLM-based models, Time-LLM-GPT 
consistently outperformed Time-LLM-BERT in all PHs. It also achieved 
similar results compared to other models, exhibiting lower STDs in the 
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Table 2
Forecasting results (mean±standard-deviation) of the different models in participants using MDI as the insulin administration 
method. The results with the lowest mean for each PH are in bold.
 Model PH=60 minutes PH=90 minutes PH=120 minutes
 MAE RMSE MAE RMSE MAE RMSE  
 LSTM 17.5 ± 18.4 19.8 ± 20.4 21.7 ± 17.9 25.8 ± 21.0 22.0 ± 15.9 26.3 ± 18.8  
 TCN 18.7 ± 20.2 21.0 ± 22.0 22.6 ± 18.8 26.4 ± 21.96 21.6 ± 14.5 26.2 ± 17.9  
 N-HiTS 19.0 ± 18.5 21.2 ± 20.2 21.8 ± 17.7 25.6 ± 21.0 23.4 ± 14.8 28.1 ± 18.5  
 TiDE 19.5 ± 19.4 21.7 ± 21.4 22.6 ± 18.7 26.5 ± 21.9 19.8 ± 12.2 24.2 ± 15.3 
 TSMixer 24.3 ± 20.9 26.4 ± 22.7 25.9 ± 19.9 30.3 ± 22.3 24.8 ± 14.7 29.5 ± 17.9  
 PatchTST 18.7 ± 19.9 20.9 ± 21.9 22.2 ± 17.8 26.1 ± 21.0 22.5 ± 15.3 27.6 ± 19.4  
 Time-LLM-GPT 19.4 ± 15.1 21.6 ± 15.6 21.4 ± 14.1 24.3 ± 15.2 23.8 ± 14.1 27.4 ± 15.8  
 Time-LLM-BERT 20.7 ± 16.5 22.8 ± 17.0 22.1 ± 14.5 25.0 ± 15.7 29.6 ± 18.2 33.0 ± 19.0  
 Personalized 15.7 ± 12.5 17.5 ± 13.4 20.2 ± 14.2 23.5 ± 15.9 21.9 ± 14.0 25.7 ± 15.8  
60-minute and 90-minute PHs. For instance, in the 60-minute PH, Time-
LLM-GPT showed an MAE of 19.4 ± 15.1, which is considerably lower 
than the best individual model LSTM (MAE 17.5 ± 18.4). Regarding 
the 90-minute PH, Time-LLM-GPT achieved the best performance (MAE 
21.4 ± 14.1) compared to individual models and even demonstrated a 
lower STD compared to the personalized approach (MAE 20.2 ± 14.2). 
However, LLMs exhibited worse performance in the PH of 120 min, 
achieving the two worst MAE and RMSE values compared to the rest 
of the models.

To ensure an accurate evaluation of intra-patient variability and to 
compare it with inter-patient variability, we calculate intra-patient vari-
ability as the mean of the individual STDs obtained by measuring the 
absolute error for each patient. Appendix  C presents a detailed analysis 
of the intra-patient and inter-patient variability for users employing 
MDI as their insulin administration method. Inter-patient variability is 
calculated as the STD of the MAE across all users. Table  C.6 presents 
a reduced intra-patient variability compared with the inter-patient 
variability for users using MDI. For a PH of 60 min, all models exhibit 
an intra-patient variability ranging between 9.2 and 11.6, highlighting 
the consistency of predictions within individual users. In contrast, for 
inter-patient variability and in the PH of 60 min, the STD of the MAE 
ranges from 12.5 to 20.9, nearly doubling the variability observed 
in the intra-patient case. For longer PHs of 90 and 120 min, intra-
patient variability stabilizes between 12.7 and 16.3, depending on the 
model. The TiDE model is the only one where intra-patient variability 
(14.4) exceeds inter-patient variability (12.2), likely due to its reduced 
overall variability for a long-predicted horizon. In conclusion, while the 
gap between intra-patient and inter-patient variability decreases as the 
PH increases for users on MDI, intra-patient variability remains more 
controlled and consistent than inter-patient variability.

In Fig.  3, we analyzed the distribution of the MAE for each model 
across different PHs using boxplots. For 60-minute PH, the personalized 
approach demonstrated the lowest median MAE (11.7) and the smallest 
interquartile range (IQR) among all models, with 75% of users achiev-
ing an MAE below 20.4. The small IQR is indicative of a strong and 
consistent performance. For 90-minute PH, the personalized approach 
achieved the lowest median MAE (15.3), with 75% of users achieving 
an MAE below 28.5. Both the median MAE and the IQR increased with 
the growth of the PH, as expected. For 120-minute PH, the personalized 
approach no longer shows the best performance, as the TiDE and LSTM 
models achieve lower medians with 16.6 and 17.0, respectively, com-
pared to 19.8 for the personalized approach. However, the personalized 
approach still performed well, with 75% of users obtaining an MAE 
below or equal to 29.9, similar to the LSTM model. In this case, the 
TiDE achieved the best performance with the smallest IQR because 
75% of the participants achieved an MAE lower than 26.5. Despite the 
personalized approach achieving lower MAE values and STD overall, 
the Wilcoxon test indicated that the differences were not statistically 
significant across all PHs. It is important to note that the differences 
may not be statistically significant due to the limited sample size of 
just 50 samples. In addition, to complement the previous results, we 
represented the RMSE distributions using boxplots in Appendix  A for 
participants using MDI, in particular, in Fig.  A.9.
7 
Fig. 3. Distribution of MAE values for different models trained with CGM data 
from participants using MDIs as the insulin administration method. Each boxplot was 
generated using a different PH: (a) 60 min; (b) 90 min; (c) 120 min.

Fig.  4 shows the CEG plots that compare the real and predicted CGM 
values obtained by Time-LLM-GPT and the personalized approach. We 
analyzed Time-LLM-GPT. It demonstrated stable performance across 
the CGM data of different participants, and the personalized approach 
because it achieved the best overall results. As shown in Fig.  4, both 
models reliably predict hyperglycemic events without errors. However, 
some inaccuracies occur when forecasting hypoglycemic events in both 
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Fig. 4. Clarke error grid plots that compare predicted and real CGM values for all participants who used MDIs as the insulin administration method. To compare the performance 
of LLM-based models, we present only the CEG plots for: (a–c) Time-LLM using GPT as backbone at PH-60 min, 90 min, and 120 min, respectively ; and the (d–f) personalized 
method (model with the best MAE and RMSE values) at PH-60 min, 90 min, and 120 min, respectively.
Table 3
Percentages of errors in each zone of the CEG using Time-LLM-GPT and personalized 
approach for all participants who used MDIs.
 Model CEG Zone PH=60 min PH=90 min PH=120 min 
 Zone A 76.0% 72.3% 70.0%  
 Zone B 22.0% 26.0% 28.0%  
 Time-LLM Zone C 0% 0% 0%  
 GPT Zone D 2.0% 1.7% 2.0%  
 Zone E 0% 0% 0%  
 Zone A 83.0% 71.3% 70.5%  
 Zone B 15.0% 27.0% 27.5%  
 Personalized Zone C 0% 0% 0%  
 Zone D 2.0% 1.7% 2.0%  
 Zone E 0% 0% 0%  

approaches. Regarding Time-LLM-GPT, Table  3 presents the percentage 
of total values in each zone of the CEG plot. Zone A decreases as the 
prediction PH increases: 76.0%, 72.3%, and 70.0% for PHs of 60 min, 
90 min, and 120 min, respectively. Conversely, the percentage of values 
in Zone B increases with larger PHs: 22%, 26.0%, and 28.0% for the 
same intervals. The proportions in Zones C and E remain constant at 
0% across all PHs. Lastly, the percentage of values in Zone D remains 
relatively stable: 2.0%, 1.7%, and 2.0% for PHs of 60 min, 90 min, and 
120 min, respectively. The percentage of total values in each zone of the 
CEG plot for the personalized approach are shown in Table  3, showing a 
higher percentage of total values within Zone A: 83%, 71.3%, and 70%, 
respectively for 60, 90 and 120 min. The percentages in Zone B are 
15%, 27%, and 28%, while the percentages in Zone D remain the same 
as those observed for the Time-LLM-GPT model (2%, 1.7%, and 2%) 
across all PHs. As with the Time-LLM-GPT approach, the percentages 
in Zones C and E remain constant at 0% across all PHs.

Fig.  5 presents the number of MDI participants in which each model 
reached the best performance in the validation subset for different 
PHs. As shown, all models are employed by at least one participant 
in each PH, indicating that the selection of an accurate model is highly 
8 
Fig. 5. Number of MDI participants in which each model reached the best performance 
in the validation set across different PHs.

dependent on individual CGM variability. Time-LLM-GPT is the most 
frequently used, maintaining stable selection across the three PHs: 7 
out of 50 participants at both the 60-minute and 90-minute PHs, and 10 
participants at the 120-minute PH. NHiTS is the second most frequent 
model selected, being used by 7, 8, and 9 participants across the three 
PHs, respectively. By contrast, Time-LLM-BERT is the model less used, 
with its usage decreasing as the PH increases: 4 participants at the 60-
minute PH, 3 participants at the 90-minute PH, and only 1 participant 
at the 120-minute PH.

3.2. Forecasting results in participants using insulin pump

In this subsection, we present the forecasting results of models 
trained using CGM data of participants who used insulin pumps. Table 
4 presents the forecasting results of various models for three different 
PHs, including 60, 90, and 120 min. All models exhibit reasonable 
performance for the three PHs, with 15.2 ≤MAE≤ 19.3 (60 min), 
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Table 4
Forecasting results (mean±standard-deviation) of different models trained with CGM data of participants treated with pumps 
as the insulin administration method. The results with the lowest mean for each PH are in bold.
 Model PH=60 minutes PH=90 minutes PH=120 minutes
 MAE RMSE MAE RMSE MAE RMSE  
 LSTM 16.4 ± 12.3 18.4 ± 13.2 18.5 ± 13.6 21.1 ± 14.8 19.6 ± 13.9 23.1 ± 15.4  
 TCN 17.1 ± 12.6 18.8 ± 13.3 18.6 ± 13.3 21.3 ± 14.3 20.1 ± 12.7 23.6 ± 14.4  
 N-HiTS 15.8 ± 11.5 17.6 ± 12.3 17.6 ± 12.4 20.1 ± 13.6 18.7 ± 13.6 21.8 ± 15.0  
 TiDE 15.5 ± 10.8 17.3 ± 11.7 18.0 ± 12.7 20.6 ± 13.6 20.5 ± 13.0 23.5 ± 14.0  
 TSMixer 16.1 ± 12.0 17.9 ± 12.9 17.7 ± 12.6 20.5 ± 13.1 19.7 ± 13.4 23.0 ± 14.9  
 PatchTST 16.0 ± 12.1 17.7 ± 12.9 17.6 ± 11.8 20.1 ± 12.7 18.5 ± 13.6 21.6 ± 14.8 
 Time-LLM-GPT 16.9 ± 9.6 18.7 ± 10.1 18.5 ± 11.7 21.0 ± 12.6 19.6 ± 10.2 22.9 ± 10.8  
 Time-LLM-BERT 19.3 ± 12.6 21.1 ± 12.8 20.3 ± 12.7 22.5 ± 13.1 21.9 ± 13.0 24.5 ± 13.3  
 Personalized 15.2 ± 10.1 17.0 ± 10.7 17.2 ± 11.0 19.0 ± 11.5 19.0 ± 11.5 22.2 ± 12.4  
17.2 ≤MAE≤ 20.3 (90 min), and 18.5 ≤MAE≤ 21.9 (120 min). It 
is worth mentioning that these models outperformed the results ob-
tained of models trained with participants using MDI, and the STDs 
of all models are lower compared to the values for the MDI partic-
ipants (see Table  2). The personalized approach achieved the lowest 
MAE and STD in the 60-minute and 90-minute PHs, with an MAE of 
15.2 ± 10.1 and 17.2 ± 11.0 for 60 min and 90 min, respectively. For 
PH of 120 min, N-HiTS and Patch-TST outperformed the personalized 
approach (19.0 ± 11.5), reaching 18.7 ± 13.6 and 18.5 ± 13.6, respec-
tively. The best individual model for PH=60 was TiDE (15.5 ± 10.8), 
and for PH=90 was Patch-TST (17.6 ± 11.8). Regarding the LLM 
models, Time-LLM-GPT consistently outperformed Time-LLM-BERT for 
all PHs, achieving reasonable forecasting results compared to other 
models, and exhibiting lower STDs for all three PHs. For instance, in 
the 60-minute PH, Time-LLM-GPT achieved an MAE of 16.9 ± 9.6, 
even lower than the personalized approach. For 120-minute PH, Time-
LLM-GPT (MAE 19.6 ± 10.2) achieved the lowest STD among all 
models.

Table  C.7 presents the inter-patient and intra-patient variability for 
patients using insulin pumps as their insulin administration method. 
Similar to the previous results, the findings indicate reduced intra-
patient variability compared to inter-patient variability. For a PH of 
60 min, all models exhibit a value below 9.6, demonstrating consistent 
predictions within individual users. In contrast, inter-patient variability 
shows values ranging between 9.5 and 12.6, highlighting a noticeable 
increase compared to the intra-patient case. For larger PHs of 90 and 
120 min, the intra-patient variability stabilizes within the range of 
10.6 to 11.5 for 90 min and 11.4 to 13.0 for 120 min. This intra-
patient variability remains lower than inter-patient variability, which 
ranges from 11.0 to 13.6 for 90 min and 10.2 to 13.9 for 120 min. 
Notably, the Time-LLM-GPT model is the only one to exhibit higher 
intra-patient variability (13.0) compared to inter-patient variability 
(10.2) for PH = 120 min. These results indicate that increasing the PH 
decreases the gap between inter-patient and intra-patient variability, 
although intra-patient variability remains consistently more controlled 
than inter-patient variability.

Fig.  6 shows the distribution of the MAE for each model across dif-
ferent PHs using boxplots, specifically for participants utilizing pumps 
as their insulin administration method. For a 60-minute PH, the per-
sonalized approach demonstrates the second smallest IQR, with 75% 
of users achieving an MAE below 21.5. The TiDE model slightly out-
performed the personalized approach, with 75% of the users achieving 
an MAE below 19.9, although both models shared a similar median 
MAE of 12.2. At a 90-minute PH, the personalized approach achieved 
the lowest median MAE (13.0) and the smallest IQR, with 75% of 
users obtaining an MAE below 20.8. Finally, for a 120-minute PH, the 
personalized approach maintained strong performance, achieving the 
third-lowest median MAE (15.1), surpassed by the PatchTST (12.8) and 
N-HiTS (14.3) models. Notably, the personalized approach exhibited 
a more compact IQR, with its upper bound reaching 23.9, compared 
with the PatchTST model which reached a value of 25.6. The median 
and upper bound of the IQR exhibited minimal increases as the PH 
9 
Fig. 6. Distribution of MAE values of different models trained with CGM data of 
participants treated with pumps as the insulin administration method. Each boxplot 
was generated using a different PH: (a) 60 min; (b) 90 min; (c) 120 min.

extended, highlighting the consistent performance of the personalized 
approach across all PHs. Although the personalized approach achieved 
lower MAE values and standard deviations overall, the Wilcoxon test 
revealed that the differences were not statistically significant across 
all PHs, likely due to the limited sample size of only 50 participants. 
Additionally, we represented the RMSE distributions using boxplots in 
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Fig. 7. Clarke Error Grid plots that compare predicted and real CGM values for all participants who used insulin pump as the insulin administration method. To compare 
performance of LLM-based models, we only present the CEG plots for: (a–c) Time-LLM using GPT as backbone at PH-60 min, 90 min, and 120 min, respectively ; and the (d–f) 
personalized method (model with the best MAE and RMSE values) at PH-60 min, 90 min, and 120 min, respectively.
Appendix  A for participants using pumps as the insulin administration 
method, in particular, in Fig.  A.10.

Fig.  7 shows the CEG plots that compare the real and estimated 
glucose values in participants using insulin pumps. Similar to the 
previous section, where Fig.  4 represents the Time-LLM-GPT and per-
sonalized approaches. Time-LLM-GPT was selected because of its stable 
performance across different participants, while the personalized ap-
proach achieved the best overall results. Fig.  7 demonstrates that 
all critical errors arise when forecasting hypoglycemic events, while 
this approach consistently succeeds in predicting hyperglycemic events 
without failure.

Table  5 presents the percentages of values located in each zone 
of the CEG plot for participants using pumps and the Time-LLM-GPT 
approach. The percentage of total values within Zone A decreases with 
larger PHs: 72.2%, 70.7%, and 65.7% for 60 min, 90 min, and 120 min, 
respectively. Conversely, the percentage of values in Zone B increases: 
26.1%, 28.3%, and 33.6% for the same PHs. The percentages in Zones 
C and E remain constant at 0% across all PHs. Lastly, the percentage 
in Zone D remains relatively stable: 1.7%, 1%, and 0.8%. As a result, 
although the general error increases with larger PHs, the percentage 
of critical errors is maintained or even reduced as PH increases. In 
contrast, the personalized approach consistently outperformed Time-
LLM-GPT as it is shown in Table  5. For PHs of 60 min, 90 min, and 
120 min, the personalized approach achieved a higher percentage of 
total values within Zone A: 77.3%, 77.3%, and 70.1%, respectively. The 
percentages in Zone B are 21.7%, 21.7%, and 29.1%, while Zone D is 
relatively stable across all PHs, with values of 1.0%, 1.0%, and 0.8%. 
As with the Time-LLM-GPT approach, the percentages in Zones C and 
E consistently remained at 0% across all PHs.

Fig.  8 presents the number of insulin pump participants using each 
model across different PHs in the personalized approach. All models 
were employed by at least one participant in each PH, indicating that, 
similar to MDI participants, the selection of an accurate model is highly 
dependent on individual CGM variability. For the 60-minute PH, the 
two most common models are Time-LLM-GPT (used by 11 participants) 
and TCN (used by 13 participants). As the PH increases, the number of 
participants using Time-LLM-GPT remains stable, with 15 participants 
10 
Table 5
Percentages of errors in each zone of the CEG using Time-LLM-GPT and personalized 
approach for all participants who used pumps.
 CEG Zone PH=60 min PH=90 min PH=120 min 
 Zone A 72.2% 70.7% 65.7%  
 Zone B 26.1% 28.3% 33.5%  
 Time-LLM Zone C 0% 0% 0%  
 GPT Zone D 1.7% 1.0% 0.8%  
 Zone E 0% 0% 0%  
 Zone A 77.3% 77.3% 70.1%  
 Zone B 21.7% 21.7% 29.1%  
 Personalized Zone C 0% 0% 0%  
 Zone D 1.0% 1.0% 0.8%  
 Zone E 0% 0% 0%  

at the 90-minute PH and 12 at the 120-minute PH. In contrast, the 
number of participants using TCN decreases significantly, dropping to 9 
at the 90-minute PH and only 2 at the 120-minute PH. The transformer-
based model PatchTST also presented stable usage across the different 
forecasting horizons, being employed by 6 participants at the 60-minute 
PH, 9 participants at the 90-minute PH, and 9 participants at the 120-
minute PH. Similar to the MDI cohort, Time-LLM-BERT is the least 
commonly used model among insulin pump participants, indicating its 
relatively lower suitability for this specific forecasting task.

4. Discussion

In this paper, we evaluated the effectiveness and performance of 
the LLM-based model named Time-LLM for forecasting glucose values 
collected from CGM devices of patients diagnosed with T1D. Specifi-
cally, we compared the performance of these models against various 
ANN-based models by considering two cohorts, including participants 
using MDI and insulin pumps. This comparison is relevant because in 
the literature most predictive models have been primarily developed 
using CGM data of patients treated with insulin pumps, and lim-
ited research has been conducted using MDIs. The ANN-based models 
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Fig. 8. Number of insulin pump participants in which each model reached the best 
performance in the validation set across different PHs.

included LSTM, TCN, N-HiTS, TS-Mixer, TiDE, and the transformer-
based model named PatchTST. It is important to note that LLM-based 
models (with backbone BERT and GPT) along with TiDE, TS-Mixer, and 
Patch-TST, have not been explored for glucose forecasting. Lastly, we 
designed an adaptive personalized approach where each participant is 
assigned the model that best fits their data, rather than using the same 
model for all participants.

Regarding the insulin pump cohort, the models that achieved the 
lowest MAE for each PH were: personalized (15.2 ± 10.1) for
PH=60 min, personalized (17.2 ± 11.0) for PH=90 min, and Patch-
TST (18.5 ± 13.6) for PH=120 min. In contrast, for the MDI cohort, 
the best results across the three PHs were: personalized (15.7 ± 12.5) 
for PH=60 min, personalized (20.2 ± 14.2) for PH=90 min, and TiDE 
(19.8 ± 12.2) for PH=120 min. The MAE values in the insulin pump 
cohort are notably lower, indicating better overall performance of the 
models compared to participants using MDIs. Bear in mind that the 
closed loops already have a glucose prediction model embedded, cor-
rections in the insulin infusion rate are performed, and less variability 
in glucose is expected. Furthermore, participants treated with insulin 
pumps consistently exhibited significantly lower STD across all models 
and PHs. This difference in variability between the two cohorts can be 
attributed to a higher short-term variability associated with the usage of 
MDIs, as it has been recognized in previous studies [65]. The difference 
in STD between the two cohorts decreases as the PH increases. This 
short-term variability affects the general performance of the models in 
the MDI cohort reducing the MAE of the models and increasing the STD 
values.

Reviewing the best results, for short-term forecasting, the best op-
tion was the proposed personalized approach, obtaining the best perfor-
mance in both datasets for the 60 and 90-minute PHs. The RNN-based 
models perform considerably well, with LSTM consistently outperform-
ing TCN models in both datasets. Notably, in the MDI cohort for 
PH=60, LSTM emerged as the best individual model, achieving an 
MAE of 17.5 ± 18.4. However, both LSTM and TCN models exhibited 
a considerably high STD, with a mean STD of 15.3 across all PHs 
in both datasets, compared to the overall mean STD of 13.7 for all 
models. MLP-based models generally outperformed RNN models. This 
is evident in the MDI cohort in PH of 120 min, where the TiDE model 
achieved the best overall performance with an MAE of 19.8 ± 12.29. 
This aligns with previous findings that TiDE can capture information for 
long-term forecasting [16]. Additionally, both N-HiTS and TiDE models 
performed well in the pump cohort, with TiDE being the best individual 
model in PH of 60 min (15.5 ± 10.8) and PH of 90 min (17.6 ± 12.4). 
Conversely, the TS-Mixer model did not perform well in glucose fore-
casting. It consistently ranks among the worst models across all PHs 
in both datasets. Lastly, PatchTST also provided reasonable results, 
particularly in the pump dataset and for larger forecasting horizons. 
It achieved the best performance in PH=120 and PH=90 in the pump 
dataset. However, PatchTST faced challenges in the CGM data of the 
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MDI cohort, failing to capture the variability encountered, resulting in 
sub-optimal performance.

For the first time in the literature, we evaluated LLM-based models 
using as backbone both GPT and BERT to forecast glucose levels. 
We observed that the forecasting results of these models were similar 
to those values of RNN, MLP-based models, and transformer-based 
models. Moreover, the LLM approaches captured variability better 
and consistently achieved the lowest STD, surpassing the personalized 
approach in some cases. Time-LLM-GPT was the best individual model 
in the PH of 60 min for the MDI cohort. Finally, it is worth noting that 
Time-LLM-GPT outperformed the results of the Time-LLM-BERT in all 
cases. Reviewing the CEG plots, Time-LLM-GPT and the personalized 
approach performed similarly. The CEG results were better in the pump 
cohort than in the MDI cohort, as the percentage of values falling 
in the dangerous zone was lower. Considering only the personalized 
approach, in the pump dataset, only 1% of the values fell into the 
danger zone D, consistently across all PHs. In contrast, for the MDI 
dataset, this percentage varies between 1.8% and 2.1%. Both results 
are good, however, the minimum acceptable number of values located 
in zones A and B is 99% [29]. In both datasets, the values were only 
located in zones A, B, and D, so only the personalized approach in the 
pump cohort reaches the minimum 99% value and complies with the 
regulations.

Upon reviewing the figures representing the selected models in the 
personalized approach (Figs.  5 and 8), we observed that all models were 
selected for at least one participant across both cohorts. This distribu-
tion highlights the importance of accurately selecting the model to fit 
the unique characteristics of each participant’s glucose variation levels. 
In both datasets, the number of participants selecting the Time-LLM-
GPT model has maintained stable and high across all PHs. The proposed 
personalized approach outperformed the individual models in patients 
with MDI and insulin pumps in short-term forecasting (60 min and 
90 min). However, for long-term forecasting, TiDE performed better 
for MDI, and Patch-TST works better for insulin pumps. Additionally, 
the models trained on the pump cohort outperformed those trained on 
the MDI cohort, especially in terms of STD, which was notably high in 
the MDI dataset.

By analyzing the MAE distributions for participants using MDI 
and pumps as their insulin delivery methods (Figs.  3 and 6), we 
extracted several insights. These plots reveal that, although the per-
sonalized approach does not always achieve the best scores, it consis-
tently demonstrates strong and stable performance across the different 
PHs. In contrast, some models exhibit better performance at specific 
PHs but perform poorly at others. Furthermore, the personalized ap-
proach shows robust performance in both participant groups. The upper 
bounds of the IQR for the MDI group were 20.4, 28.5, and 29.9 for 
the 60-minute, 90-minute, and 120-minute PHs, respectively. For pump 
users, the corresponding upper bounds were 21.5, 20.8, and 23.9. This 
indicates that, while both results mean good performance, the results 
for participants using insulin pumps are slightly better compared to 
those using MDI, as evidenced by their lower mean, median, and upper 
IQR bounds for MAE. Despite these results, the Wilcoxon test indicated 
that the differences in performance between the personalized approach 
and the other models were not statistically significant. This outcome 
may be attributed to the limited sample size of only 50 participants. 
In statistical analysis, it is essential to consider statistical power, which 
is the probability that a study of a given size will detect a statistically 
significant difference when one truly exists. The commonly accepted 
threshold for adequate statistical power is 0.8 [66]. In this case, with 
a sample size of only 50, the Wilcoxon test fails to meet the required 
power of 0.8, using the formula from [66], highlighting the need for a 
larger sample size to achieve reliable statistical comparisons.

The methodology developed in this study will be integrated into a 
real-world mobile-based application as part of the WARIFA
project [67]. WARIFA [68] is an international and multidisciplinary 
project involving researchers from multiple European Union countries, 
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whose aim is to create a comprehensive AI-based system for personal-
ized early risk prediction of Non-Communicable Diseases (NCDs). The 
mobile application will be accessible via smartphones and the users 
will be able to add data from various data sources to assess NCD risks 
and provide personalized lifestyle recommendations. Within the appli-
cation, users will initially upload three days of glucose measurements 
from a CGM device. Data will be used to train and select the model 
best suited to the user’s characteristics. Once the model is calibrated, 
users will only need to provide 24 h of glucose measurements for the 
application to forecast glucose levels based on these inputs in the PH 
indicated by the user. The main goal is to empower individuals to take 
proactive steps in preventing risk episodes, promoting overall health, 
and reducing the burden on healthcare systems.

One of the key requirements for deploying an AI model in a real-
world application is accurately assessing its resource consumption and 
environmental impact. This is particularly important because these 
tools often demand substantial energy, contributing significantly to a 
notable adverse impact on the environment. Consequently, it is essen-
tial to implement sustainability measures that enhance transparency, 
not only in terms of model performance and accuracy but also regard-
ing their carbon footprint, which reflects energy usage (e.g., through 
tools like the ML emissions calculator) [69]. To address this, Appendix 
B provides a comprehensive analysis of the resource consumption of 
each model during the training phase for 50 users. This evaluation 
includes metrics such as time consumed, energy consumed, and CO2 
emissions. Resource usage was evaluated by computing the mean and 
STD across the three PHs for both datasets. The environmental impact 
was assessed using an NVIDIA GPU ADA 4000 for training. As shown in 
Figs.  B.11 and B.12, LLM-based models exhibit significantly higher time 
and energy consumption, resulting in greater carbon emissions com-
pared to the other models across both datasets. Most models require 
less than 15 min to train for 50 users, except for the LLM-based models, 
which take approximately 30 min. For the personalized approach, 
where all models are trained for each user, the total resource consump-
tion is calculated as the sum of resources used by all models. Training 
for 50 users takes around 2 h. Despite the increased computational 
time, the environmental impact remains limited due to relatively low 
CO2 emissions and energy consumption [70]. Furthermore, the training 
time for the personalized approach per user is under 3 min. While 
a large-scale implementation may not be feasible with a single GPU, 
leveraging cloud services can significantly reduce computational time, 
making such implementations viable.

Our research highlights the utility of using LLM models to forecast 
glucose values and emphasizes the necessity of a personalized approach 
to enhance model performance. However, this methodology has three 
significant limitations. First, the experiments were conducted on a 
dataset with a limited sample size of older adults with T1D, predom-
inantly from a white ethnic group. This limitation underscores the 
need for further evaluation and extension of the model to more diverse 
populations. To partially address this limitation, we have applied this 
methodology to the OhioT1DM dataset [71]. The personalized model 
achieved good performance, with an MAE of 14.2 ± 5.21, 18.3 ± 7.1, 
and 22.1 ± 7.6 for the 60-minute, 90-minute, and 120-minute predic-
tion horizons, respectively. Additionally, the model’s training demands 
substantial computational power and resources, which poses challenges 
for implementing this pipeline on a large scale. Specifically, the Time-
LLM models require considerable time and resources to train, making it 
impractical to test all possible hyperparameter combinations for each 
user. Lastly, the model requires a minimum amount of data without 
more than one hour of consecutive missing values to forecast glucose 
values. If the required data is not provided, the model will not produce 
any forecasts.

Since we evaluated the performance of LLM-based models in this 
work it is worth highlighting the importance of prompting. Prompt-
ing refers to the process of providing input (named ‘prompt‘) to an 
LLM to generate a desired output. Broadly speaking, it is how users 
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interact with LLMs, guiding them to produce accurate, coherent, and 
contextually appropriate responses. As stated, Time-LLM transforms 
time-series data into a text representation before processing it through 
LLM-based models, and prompting can impact results. Prior studies 
on prompting have demonstrated its great impact on performance in 
different tasks [72,73]. However, identifying the adequate prompt is 
not straightforward because it often takes a significant amount of time 
for word tuning, and it is sensitive to slight changes, impacting the 
performance of LLMs [74]. By summarizing, prompting is a key com-
ponent because: (i) LLMs interpret structural, contextual, and semantic 
variations in prompts differently; (ii) changes in the prompt format, 
wording, or tokenization can influence model outputs; and (iii) differ-
ent LLM versions (e.g., GPT, GPT-4, Llama, Llama2) might introduce 
architectural changes or additional pre-training knowledge, modifying 
the model’s response to the same input prompt. This is a current 
limitation of most LLM-based models, and it should be considered when 
these models are used for glucose forecasting.

Additionally, although other LLM-based models have been proposed 
for the prognosis of type 2 diabetes [75], forecasting patient health 
trajectories [76], and predicting the onset of type 2 diabetes [39], 
limited research has been performed for glucose. In contrast to other 
LLM-based models for time series forecasting such as LLM4TS, LL-
MAD, or TimeCMA that require fine-tuning [77], Time-LLM does not 
require fine-tuning to reach reasonable forecasting results. Thanks to 
the reprogramming layer in Time-LLM, which serves as an interface 
to transform time series data into a format that LLMs can effectively 
process, any LLM-based model (e.g., GPT, Llama) can be used for 
glucose forecasting, being highly adaptive in contexts and applications 
where the computational complexity of an LLM can be a restriction. In 
our study, we evaluate the feasibility of using LLMs without additional 
re-training, reducing computational time and reaching reasonable fore-
casting results. Additionally, our approach serves as the groundwork 
for future advancements in time series modeling using LLMs, and more 
particularly in healthcare applications. Since the text generated by 
Time-LLM is promising to be able to predict glucose, we can leverage 
these embeddings for other complex tasks. For instance, this is a first 
step toward leveraging LLM embeddings for glucose forecasting, with 
the long-term goal of integrating them into fusion models that combine 
domain-specific features extracted from Type 1 Diabetes (T1D) patients 
(e.g., insulin dosage, physical exercise) with embeddings representa-
tions learned by LLMs. In the previous author’s paper [78], fusion 
methods were used to predict severe hypoglycemia using multimodal 
data, and a SAX-based model was used to obtain a vector representation 
of the time series of glucose. Due to reasonable results of Time-LLM, 
in future work, we can obtain embeddings of glucose, and then use 
these representations for more complex fusion methods. This allows us 
to have a more overall representation of a patient’s metabolic state, 
thus improving glucose forecasting paving the way for more effective 
personalized healthcare applications, and supporting clinical-decision 
decision-making.

In future work, we plan to focus on three key areas. First, due 
to limited computational resources, we aim to test a broader range 
of hyperparameters in the LLM-based models to improve their per-
formance. Additionally, we will explore more advanced GPT models 
(e.g., GPT-3, GPT-4) and different versions of LLAMA to evaluate their 
effectiveness as the backbone for Time-LLM. Second, we intend to 
incorporate additional information, such as demographic data (e.g., age 
and weight) and lifestyle information (e.g., carbohydrates consumed 
during the period or exercises performed), to further enhance forecast-
ing accuracy. Lastly, we aim to extend this analysis to a larger group 
of individuals, including populations using different types of insulin 
pumps.
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5. Conclusion

In this paper, we investigated the effectiveness, performance, and 
limitations of LLM-based models for predicting glucose time series in 
patients diagnosed with T1D. We used real-world CGM data collected 
by the T1DEXI study, including two cohorts: patients treated with MDIs 
and insulin pumps. We considered three different PHs (60, 90, and 
120 min) and quantitatively evaluated the performance of eight AI-
based models using MAE, RMSE, and the CEG plot. The best forecasting 
results for the MDI cohort were reached using the personalized ap-
proach in short-term PHs (60 and 90 min), with an MAE of 15.7 ± 12.5, 
20.2 ± 14.2, whereas for long-term PH (120 min), TIDE obtained an 
MAE of 19.8 ± 12.2. Regarding the pump cohort, we obtained an 
average MAE of 15.2 ± 10.1 and 17.2 ± 11.0 using the personalized 
approach, and 18.5 ± 13.6 with Patch-TST in the PH=90 min. The 
CEG analysis showed that a large proportion of the model’s forecastings 
fell within zones A and B for 60, 90, and 120 min. It is worth noting 
that LLM-based models provided reasonable forecasting results, with 
similar MAE and RMSE values compared to novel and sophisticated 
ANN-based models, and with the lowest STD in both metrics. To the 
best of our knowledge, this is one of the first studies that investigates 
LLM-based models for predicting glucose time series and distinguishing 
between individuals with different insulin therapies (MDIs and pumps). 
Our work contributes to the development of personalized models for 
glucose forecasting, supporting clinical decision-making and improving 
the control of glucose levels of individuals with T1D.
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Appendix A. Representation of the RMSE using boxplots.

See (Figs.  A.9 and A.10).

Appendix B. Comprehensive analysis of resource consumption

See (Figs.  B.11 and B.12).
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Fig. A.9. Distribution of the RMSE of the eight different models trained with CGM 
data from participants using MDI as the insulin administration method. Each boxplot 
was generated using a different PH: (a) 60 min; (b) 90 min, (c) 120 min.

Table C.6
Analysis of intra-patient and inter-patient variability among participants using MDI as 
their insulin administration method. The inter-patient variability is computed as the 
STD of the MAE using all users, while the intra-patient variability is computed as the 
mean of the different values of STD obtained by measuring the absolute error for each 
individual patient.
 Model PH = 60 minutes PH = 90 minutes PH = 120 minutes
 Inter-Var. Intra-Var. Inter-Var. Intra-Var. Inter-Var. Intra-Var. 
 LSTM 18.4 10.2 17.9 14.7 15.9 15.3  
 TCN 20.2 10.3 18.8 14.4 14.5 14.5  
 N-HiTS 18.5 10.2 17.7 13.8 14.8 14.7  
 TiDE 19.4 10.4 18.7 14.7 12.2 14.4  
 TSMixer 20.9 10.8 19.9 16.2 14.7 16.3  
 PatchTST 19.9 9.8 17.8 14.3 15.3 15.2  
 Time-LLM-GPT 15.1 11.6 14.1 13.0 14.1 13.9  
 Time-LLM-BERT 16.5 11.5 14.5 12.9 18.2 14.7  
 Personalized 12.5 9.2 14.2 12.7 14.0 13.5  

Appendix C. Intra-patient and inter-patient variability analysis

See (Tables  C.6 and C.7).
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Fig. A.10. Distribution of the RMSE of the eight different models trained with CGM 
data from participants using pumps as the insulin administration method. Each boxplot 
was generated using a different PH: (a) 60 min; (b) 90 min, (c) 120 min.

Table C.7
Analysis of intra-patient and inter-patient variability among participants using insulin 
pumps as their insulin administration method. The inter-patient variability is computed 
as the STD of the MAE forecast for all users, while the intra-patient variability is 
computed as the mean of the different values of STD obtained by measuring the 
absolute error for each individual patient.
 Model PH = 60 minutes PH = 90 minutes PH = 120 minutes
 Inter-Var. Intra-Var. Inter-Var. Intra-Var. Inter-Var. Intra-Var. 
 LSTM 12.3 9.6 13.6 11.5 13.9 12.5  
 TCN 12.6 9.2 13.3 11.4 12.7 12.7  
 N-HiTS 11.5 9.1 12.4 10.6 13.6 11.7  
 TiDE 10.8 8.5 12.7 11.3 13.0 12.0  
 TSMixer 12.0 9.5 12.6 11.3 13.4 12.4  
 PatchTST 12.1 9.1 11.8 11.1 13.6 11.7  
 Time-LLM-GPT 9.6 9.5 11.7 11.2 10.2 13.0  
 Time-LLM-BERT 12.6 9.6 12.7 10.9 13.0 12.6  
 Personalized 10.1 9.5 11.0 11.0 11.5 11.4  
14 
Fig. B.11. Comparison of resource consumption for each model across three prediction 
horizons, considering users employing multiple injection methods for insulin adminis-
tration. The analysis evaluates (a) time consumption, (b) carbon emissions, and (c) 
energy consumption.
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Fig. B.12. Comparison of resource consumption for each model across three prediction 
horizons, considering users with insulin pumps. The analysis evaluates (a) time 
consumption, (b) carbon emissions, and (c) energy consumption.
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