Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/137413
Título: A computational model for multiobjective optimization of multipolar stimulation in cochlear implants: An enhanced focusing approach
Autores/as: Hernández Gil, Marcos Javier 
Ramos de Miguel, Ángel 
Greiner, David 
Benítez, Domingo 
Ramos Macías, Ángel 
Escobar, José M. 
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Genetic Algorithm
Design
Excitation
Resolution
Tutorial, et al.
Fecha de publicación: 2025
Publicación seriada: Expert Systems with Applications 
Resumen: Multipolar stimulation has been demonstrated to improve auditory perception in individuals with cochlear implants by generating more focused electric fields through simultaneous activation of multiple electrodes. In this study, we propose a novel approach to multipolar stimulation that aims to achieve the narrowest possible pattern of current densities at target neurons. Our goal is to find the optimal profile of currents delivered by the electrodes that maximizes the focusing for a specific power consumption, or alternatively, which minimizes the power for a given focusing. To this end, we have designed two objective functions which are optimized through multiobjective evolutionary algorithms. These objective functions are evaluated using a patient-specific finite element volume conduction model that replicates the cochlear geometry and electrical behavior of the implant. Experimental results demonstrate that this approach achieves tighter current density focusing compared to phased-array stimulation, albeit with higher power consumption. Additionally, it is possible to reach non-dominated solutions that simultaneously improve the focusing and power consumption of both monopolar and phased-array stimulation.
URI: https://accedacris.ulpgc.es/handle/10553/137413
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2025.127472
Fuente: Expert Systems With Applications [ISSN 0957-4174], v. 280, 127472, (Junio 2025)
Colección:Artículos
Adobe PDF (5,36 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.