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 A B S T R A C T

Multipolar stimulation has been demonstrated to improve auditory perception in individuals with cochlear 
implants by generating more focused electric fields through simultaneous activation of multiple electrodes. In 
this study, we propose a novel approach to multipolar stimulation that aims to achieve the narrowest possible 
pattern of current densities at target neurons. Our goal is to find the optimal profile of currents delivered by the 
electrodes that maximizes the focusing for a specific power consumption, or alternatively, which minimizes the 
power for a given focusing. To this end, we have designed two objective functions which are optimized through 
multiobjective evolutionary algorithms. These objective functions are evaluated using a patient-specific finite 
element volume conduction model that replicates the cochlear geometry and electrical behavior of the implant. 
Experimental results demonstrate that this approach achieves tighter current density focusing compared to 
phased-array stimulation, albeit with higher power consumption. Additionally, it is possible to reach non-
dominated solutions that simultaneously improve the focusing and power consumption of both monopolar 
and phased-array stimulation.
1. Introduction

One of the cochlear implant (CI) research interests consists in mul-
tipolar stimulation. In this context, we understand that a channel is the 
set of electrodes acting simultaneously and delivering the appropriate 
currents to stimulate a specific region of the auditory nerve. The aim 
of multipolar stimulation is to excite, for each channel, as narrow an 
area of the auditory nerve as possible. This type of stimulation produces 
more narrowly focused electric fields than monopolar stimulation (MP), 
in which only one electrode acts at each time instant.

1.1. State of the art

This section is organized around three key aspects of this work in 
relation to CI research: multipolar stimulation, patient-specific Finite 
Element Modeling (FEM), and Artificial Intelligence (AI) and computa-
tional intelligence techniques.

Firstly, works related to multipolar stimulation in CI are reviewed. 
Two types of strategies to produce intracochlear electric stimulation 
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using multipolar focusing can be identified in the literature. They have 
been named electrode focusing and neural focusing (Saba, Elliott, & 
Wang, 2014). Electrode focusing tries to reduce electrode interaction 
from voltage spread associated with monopolar stimulation (van den 
Honert & Kelsall, 2007). Several forms of electrode focusing have 
been proposed and simulated using modeling studies: bipolar (BP), 
tripolar (TP), partial tripolar (pTP), phased-array (PA) (Cakmak, Pal, 
& Sahin, 2023; Randy K. Kalkman & Frijns, 2016). Multipolar stimuli 
produce localized potential peaks that are sharper than monopolar 
stimuli (Randy K. Kalkman & Frijns, 2016).

For the PA electrode focusing, the voltage pattern at the electrodes 
gives rise to a current pattern which is calculated by inverting the tran-
simpedance matrix. For example, van den Honert and Kelsall (2007) 
consider that the optimum focusing around electrode 𝑝 is achieved 
when all the potentials at the electrode site in the perilymph are 
0 except that of the electrode 𝑝. In turn, neural focusing tries to 
achieve a sharper peak of the voltage distribution at the target neural 
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pathway (Jolly, Spelman, & Clopton, 1996; Saba et al., 2014; Xu, Luo, 
& You, 2018).

Jolly et al. (1996) qualitatively compared the field distribution of 
monopoles, dipoles, and quadrupoles a distance from the plane of the 
sources. They calculated the potential predicted by a SPICE−based 
model of the first turn of the guinea pig inner ear at different points 
in the scala tympani (electrode focusing) and at the organ of Corti 
(neural focusing). This simulation demonstrates that a quadrupolar 
configuration focuses the potential and reduces the current spread 
better than the monopolar mode. However, the peak magnitude is 
considerably less than in the monopolar mode.

Saba et al. (2014) proposed a multipolar neural focusing strategy in 
which the voltage across neurons is obtained from the transimpedance 
matrix and currents at electrodes. They used a FEM-based analysis 
to show that focusing at the spiral ganglion cells significantly im-
proved spatial selectivity compared with the strategy of just focusing 
at the electrode positions. However, one limitation of this strategy 
is that it would require significantly higher current levels than those 
needed in an electrode focusing strategy. So, a regularization coefficient 
was introduced into a novel cost function being minimized in order 
to improve current focusing and reduce current requirements. They 
showed that the effect of varying the regularization parameter on 
the voltage distribution along the spiral ganglion pathway consists in 
reducing the total current requirements. Nevertheless, the introduction 
of regularization may increase the number of activated neural regions.

A thin-film electrode array (TFEA) and partial tripolar (pTP) mode 
were combined by Xu et al. (2018) in the design stage to optimize the 
stimulation resolution (SR) of a CI at the auditory nerve fibers. A FEM 
model of the intracochlear electric potential, 𝑉𝑒, at the spiral ganglion 
neurons incorporating a TFEA and pTP mode was built and validated 
using previous experimental measurements. The SR was analyzed by 
using a defined stimulation factor 𝑉𝑠 that quantify neural focusing. Two 
types of experiments were conducted, being the first analytical using 
a simplified geometry of the cochlea and representing the stimulating 
electrodes as point current sources. Additionally, a more elaborated 
FEM model was developed to analyze the electrode−cochlea system 
with the geometry of a TFEA and pTP mode. Using the analytical 
model, these authors calculated 𝑉𝑒 along a line above the electrode 
surfaces where several spiral ganglion neurons would be located. A co-
simulation method integrating the FEM model and genetic algorithm 
was employed to maximize 𝑉𝑠 with an optimized parameter set in-
cluding the electrode diameter, electrode interval, and compensation 
coefficient, which determines the current distribution in pTP mode. 
Results for 𝑉𝑒 from the analytic and FEM models were compared with 
previous experimental results (Frijns, Dekker, & Briaire, 2011; Wu & 
Luo, 2016). Although some results are in accordance with previous 
findings, authors recognize that they used several simplifications such 
as a non-coiled shape of the cochlea or a non-real spatial distribution 
of the neurons that may sacrifice the accuracy of the simulation.

Secondly, works related to the development of patient-specific FEM 
models in CI are reviewed. They enable precise simulations fitted to 
individual anatomies and electrical properties. Advanced techniques, 
such as those proposed by Mangado et al. (2015), which employ 
statistical shape models, or by Kjer et al. (2018), which utilize statistical 
deformation models (SDM), enable the generation of precise geome-
tries from medical imaging data, including CT scans. In addition to 
anatomical precision, some studies focus on adjusting the conductivity 
(or resistivity) parameters within FEM to better replicate electrical 
behavior. For instance, Nogueira, Schurzig, Büchner, Penninger, and 
Würfel (2016) developed a parametric model capable of predicting 
voltage distributions within the cochlea, incorporating patient-specific 
geometries and electrode placements to enhance accuracy. Liu (2023) 
present a method adjusting the model resistivities by deep learning. 

Kalkman, Briaire, and Frijns (2015) examined various current fo-
cusing strategies that had been previously proposed using computa-
tional modeling studies of the implanted human cochlea. The investiga-
tion encompassed bipolar, partial tripolar and phased-array stimulation 
2 
paradigms. A FEM model was used to incorporate realistic nerve fiber 
trajectories and tissue conductivities, which were derived from patient-
specific intracochlear potentials. They showed that current focusing 
strategies require more power to attain adequate loudness levels com-
pared to monopolar stimulation (Frijns et al., 2011; Randy K. Kalkman 
& Frijns, 2016). None of these focusing strategies employ an optimiza-
tion procedure to calculate the configuration of input currents that 
increase spatial selectivity of neural excitation.

Thirdly, works related to the impact of AI and computational in-
telligence techniques in CI are reviewed. From that perspective re-
cently Zhang et al. (2025) publish a survey about the increasing impact 
of AI in auditory prosthetics, covering from: speech enhancement and 
noise reduction, advanced signal processing techniques, to personalized 
rehabilitation strategies, and particularly highlighting the integration 
of AI with CIs. Another review related with AI and CI is the one 
presented in Essaid, Kheddar, Batel, Chowdhury, and Lakas (2024), 
focused mainly in covering advancements in CI-based automatic speech 
recognition and speech enhancement, among other related aspects. 
More specifically, from the perspective of optimum design with com-
putational intelligence techniques in computational engineering and 
numerical simulation methods, Cassar, Titus, and Grill (2017) propose 
a single-objective genetic algorithm for designing optimal temporal 
patterns of neural stimulation, tested on two biophysically-based com-
putational models of neural stimulation. The applied fitness function 
was an aggregate combination of measures related with energy re-
quirements and other factors related with perceived pains or bradyki-
nesia symptoms. In de Nobel, Kononova, Briaire, Frijns, and Bäck 
(2023) a surrogate model based on machine learning methods of an 
auditory nerve fiber is developed and optimized with a genetic algo-
rithm (Wongsarnpigoon & Grill, 2010) to optimize the shape of the 
stimulus waveform in terms of energy efficiency. In Wongsarnpigoon 
and Grill (2010) a genetic algorithm was coupled to a computational 
model of extracellular stimulation of a mammalian myelinated axon, 
to determine the energy-optimal waveform shape for neural stimula-
tion. Hussain, Grill, and Pelot (2024) propose a machine learning based 
surrogate fiber model that generates spatiotemporal responses to a wide 
variety of cuff-based electrical peripheral nerve stimulation protocols, 
for the design parameters of selective stimulation of pig and human 
vagus nerves. It was applied for optimization of neural fiber responses 
to electrical stimulation comparing a differential evolution optimiza-
tion procedure with gradient descent; particularly optimization of the 
shape of charge-balanced waveforms to achieve spatially selective fiber 
activation was performed. 

Considering the above references, none of them have tackled the 
optimization problem from a multi-objective perspective. Some of the 
previous methods tried to address only the optimization of spatially se-
lective fibre activation (Hussain et al., 2024). Others addressed only en-
ergy efficiency aspects of the stimulus (de Nobel et al., 2023; Wongsarn-
pigoon & Grill, 2010). Some even combined energy efficiency aspects 
with other objectives (Cassar et al., 2017), but this was done in an 
aggregate form in a single objective. In the context of generating mul-
tipolar stimulation patterns in CIs, this work considers maximization of 
focusing and minimization of power consumption as conflicting objec-
tives, whose optimization generates a set of non-dominated solutions 
that can be obtained by directly tackling a multi-objective optimiza-
tion with stochastic global optimization algorithms (multi-objective 
evolutionary algorithms). 

1.2. Motivation

As inferred from the cited research, multipolar stimulation has 
demonstrated considerable potential for enhancing auditory perfor-
mance by generating more focused neural activation in comparison to 
conventional monopolar stimulation (Smith, Parkinson, & Long, 2013; 
Zhu, Tang, Zeng, Guan, & Ye, 2012). Nevertheless, despite its benefits 
in auditory discrimination, the counterpart of this technique is a higher 
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power consumption (Saba, 2012; Saba et al., 2014; Vellinga, Bruijn, 
Briaire, Kalkman, & Frijns, 2017; Zhu et al., 2012). The present study 
is motivated by the need to find a set of optimal profile of currents 
delivered by the electrodes that maximizes the focusing for a given 
power consumption, or alternatively, minimizes the power for a given 
focusing, in order to improve the performance of cochlear implants. 

1.3. Contributions

In this article, we use an automated optimum design procedure 
based on computational intelligence techniques to achieve optimized 
multipolar stimulation patterns for cochlear implants. As far as we 
know, in the literature authors propose focusing strategies consisting 
on achieving a target voltage pattern either at the electrode sites or 
at the neurons. Here, we propose a novel approach to multipolar 
stimulation at the neuronal level based on current densities reaching 
target neurons, rather than potentials. The main contributions of the 
paper are:

1. Development of a patient-specific FEM model construction pro-
cedure utilizing a surrogate-based evolutionary algorithm.

2. Proposal of two objective functions, one for current density fo-
cusing on target neurons, and the other for power consumption.

3. Application of multiobjective evolutionary optimization tech-
niques in which high-quality corner solutions are injected into 
the initial population, to find multipolar stimulation patterns in 
cochlear implants.

Experimental results show that the modeled current density can be 
focused more tightly than a phased-array stimulus, at the expense of 
higher power consumption. Moreover, more power-efficient stimula-
tion is possible while improving the focusing of monopolar or phased-
array stimuli.

1.4. Structure of the article

This paper presents a computational model for the multiobjective 
optimization of multipolar stimulation in cochlear implants. The con-
struction of an electrically realistic model is performed by fitting the 
FEM model parameters so that the transimpedance matrix of the model 
approximate the clinical one. An introduction to the concepts of the 
transimpedance matrix is provided in Section 2. The fitting procedure 
of the FEM model is detailed in Section 3. In addition, in this section the 
objective functions for focusing and power consumption are defined. 
These functions are applied in a multiobjective optimization process 
to achieve optimal current profiles. The test cases and their respective 
results are presented in Section 4. The implications of the results and 
the potential impact of the proposed approach on cochlear implant 
technology are discussed in Sections 5 and 6, respectively. 

2. Transimpedance matrix

The current input of a given electrode of a CI is a charge-balanced 
pulse train. The phase width and the interphase gap vary depending 
on the manufacturing company. For example, Cochlear (Cochlear® Ltd. 
Sydney, Australia) uses, for default, a biphasic stimulus with a phase 
width of 25 μs, an interphase gap width of 8 μs and a frame period of 
1112 μs (see Fig.  1).

Let 𝐢 (𝑡) = (

𝑖1 (𝑡) , 𝑖2 (𝑡) ,… , 𝑖𝐸 (𝑡)
) be the vector of the input current 

pulses from each electrode, where 𝐸 is the number of electrodes. 
Let 𝐈 (𝜔) be the Fourier transform of 𝐢 (𝑡). Then, working in the fre-
quency domain, we can write the potential at the electrodes as 𝐕 (𝜔) =
𝐙 (𝜔) 𝐈 (𝜔), where 𝐙 (𝜔) =

(

𝑍𝑖𝑗 (𝜔)
) is the transimpedance matrix and 

𝐈 (𝜔) is the vector of the currents supplied by the electrodes. The entries 
of the transimpedance matrix 𝑍𝑖𝑗 = 𝑉𝑖∕𝐼𝑗 are the relationships between 
the potential at the 𝑖th electrode and the input current at the 𝑗th 
3 
Fig. 1. Current input.

Fig. 2. Equivalent circuit of an active electrode.

electrode. Although we have not made it explicit, it is understood 
that all these quantities are frequency dependent. The terms of the 
diagonal, 𝑍𝑖𝑖, depend on the frequency due to the double layer interface 
formed between the electrolyte and the electrode, and therefore, they 
are complex. Several equivalent circuits have been proposed to model 
these impedances (see, for example, Aebischer, Meyer, Caversaccio, & 
Wimmer, 2021; Cantrell, Inayat, Taflove, Ruoff, & Troy, 2007; Franks, 
Schenker, Schmutz, & Hierlemann, 2005; McAdams & Jossinet, 1992; 
Mesnildrey, Venail, Carlyon, & Macherey, 2020; Richardot & McAdams, 
2002). In essence, all of them are variations of a circuit formed by the 
sum of two impedances 𝑍𝐷𝐿 + 𝑅𝑇 .

The first impedance, 𝑍𝐷𝐿 represents the electrolyte-electrode in-
terface, approximated by the parallel combination of a nonfaradaic 
pseudocapacitance 
𝑍𝑐𝑝𝑒 = 𝐾(𝑗𝜔)−𝛽 (1)

where 𝛽 and 𝐾 are constants, and a faradaic transfer resistance 𝑅𝑓
derived from the Butler–Volmer equation. Values of 𝛽 and 𝐾 and 𝑅𝑓
can be found in McAdams and Jossinet (1992), Richardot and McAdams 
(2002), Cantrell et al. (2007) and Mesnildrey, Macherey, Herzog, and 
Venail (2019). For example, the average value for 8 patients of 𝑌0 =
𝐾−1 given in Mesnildrey et al. (2019), for an electrode with a surface of 
0.2×0.4mm2, is 481×10−9 Ω−1s𝛽 , and 𝛽 = 0.64. The resulting impedance 
is 𝑍𝑐𝑝𝑒 = 2.079 × 106(𝑗𝜔)−0.64Ω. For this electrode the value of 𝑅𝑓 =
4.9 × 107 Ω, is extremely high and can be removed from the equivalent 
circuit, so 𝑍𝐷𝑙 ≈ 𝑍𝑐𝑝𝑒.

The second impedance, 𝑅𝑇 , is purely resistive and represents the 
sum of the resistances due to the electrolyte, tissues and conductors.

The off-diagonal terms of 𝐙 represent the potentials reached by one 
electrode produced by the current arising from another electrode and 
they are purely resistive elements (van den Honert & Kelsall, 2007). All 
of the above suggests that we write the transimpedance matrix as the 
sum of two matrices, 
𝐙 𝜔 = 𝐃 𝜔 + 𝐙 (2)
( ) ( ) 𝑐
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The first matrix 𝐃 (𝜔), is diagonal and introduces the complex
impedance, 𝑍𝐷𝐿, due to the double layer interface. The values of 𝑍𝐷𝐿
vary according to the electrode and patient under consideration (Mes-
nildrey et al., 2020). The diagonal terms of 𝐙𝑐 represent the resistance 
𝑅𝑇  of the equivalent circuit of the Fig.  2. The off-diagonal terms of 𝐙𝑐
coincide with those of 𝐙. For all this, the matrix 𝐙𝑐 is purely resistive 
(real).

The potential at the electrodes due to the current vector 𝐈 (𝜔) is 
given by 
𝐕 (𝜔) = 𝐃 (𝜔) 𝐈 (𝜔) + 𝐙𝑐𝐈 (𝜔) (3)

The second sumand in (3) is the vector of the potentials at the 
electrode sites in the perilymph 𝐕𝑝ℎ (𝜔) = 𝐙𝑐𝐈 (𝜔). The usual clinical 
telemetry only allows the measurement of the off-diagonal inputs of 
𝐙𝑐 , since they coincide with those of the transimpedance matrix 𝐙 (𝜔). 
The diagonal terms of 𝐙𝑐 must be estimated by approximate methods 
through the off-diagonal entries of 𝐙𝑐 .

Note that we are working in the frequency domain, so, to calculate 
the potentials and currents in the time domain, we have to perform the 
inverse Fourier transform. Thus, if 𝐢 (𝑡) is the input current vector at the 
electrodes, the corresponding potential vector, 𝐯 (𝑡), is given by 
𝐯 (𝑡) =−1 (𝐙(𝜔)𝐈(𝜔)) =

−1 (𝐃(𝜔)𝐈(𝜔)) + 𝐙𝑐−1 (𝐈(𝜔)) =
−1 (𝐃(𝜔)𝐈(𝜔)) + 𝐙𝑐 𝐢 (𝑡) =
𝐯𝑑𝑙(𝑡) + 𝐯𝑝ℎ(𝑡)

(4)

where 𝐯𝑑𝑙(𝑡) = −1 (𝐃(𝜔)𝐈(𝜔)) is the voltage drop in time domain 
associated to the electrode electrolyte double layer, which is the re-
sponsible of the distortion suffered by the potential with respect to the 
input 𝐢 (𝑡). The term 𝐯𝑝ℎ (𝑡) = 𝐙𝑐 𝐢 (𝑡) is the potential in the perilymph 
at the electrode positions. These are the potentials that are enforced to 
be all null, except the one corresponding to the target electrode, in the 
phased array (PA) stimulation proposed in van den Honert and Kelsall 
(2007). The potential 𝐯𝑝ℎ (𝑡) and the intensity 𝐢 (𝑡) are in phase, since 
the matrix 𝐙𝑐 is purely resistive.

3. Optimum multipolar stimulation

This section covers the description of the optimum multipolar stimu-
lation procedure. First, Section 3.1 deals with threshold current density. 
In Section 3.2 it is described how an electrically realistic model is 
constructed. In Section 3.3 the FEM conductive model is explained. 
Then in Section 3.4, the objective functions for focusing and power 
consumption optimization are introduced. Finally, the multiobjective 
optimum design method is exposed in Section 3.5.

3.1. Threshold current density

When an electrode injects a current, the neurons located in its 
surroundings are excited. There are numerous works (see, for example, 
the review article Tehovnik, Tolias, Sultan, Slocum, and Logothetis 
(2006)) that study the relationship between the injected current and the 
extension of the region of neurons triggered by this current. They show 
that the threshold input current amplitude, 𝐼𝑡ℎ, required to activate 
neurons located at distance 𝑟 from the stimulating electrode tip is given 
by 
𝐼𝑡ℎ = 𝐾𝑒𝑟

2 (5)

The values of the excitability constant 𝐾𝑒 depend, among other 
things, on the type of neuron and the input waveform. This constant 
has been measured empirically by many authors using different types 
of neurons from many animals (Tehovnik et al., 2006). An electrode can 
be considered as a point source of current at sufficiently large distances 
(on the order of several times the size of the electrode). The current 
density produced by a point source is given by 𝐽 = 𝐼∕4𝜋𝑟2. Introducing 
4 
this expression into (5), it is deduced that the threshold current density 
𝐽𝑡ℎ is 

𝐽𝑡ℎ =
𝐾𝑒
4𝜋

(6)

This result shows that an action potential is elicited if the most 
excitable areas of a neuron, which for myelinated neurons are the nodes 
of Ranvier, reach a current density greater than or equal to 𝐽𝑡ℎ.

The existence of a threshold current density is consistent with 
computational models based on the Hodgkin–Huxley (HH) equations
(Hodgkin & Huxley, 1952). In these models, the trigger of the action 
potential is the external current density passing through the neurons. 
Its threshold value for producing an action potential depends on the 
particular parameters of the HH model and the waveform of stimulus. 
Thus, taking the parameters given in Dokos (2017) and an input 
current density with the waveform of Fig.  1, it is possible to verify 
through a numerical simulation that the threshold amplitude that gives 
rise to an action potential is 𝐽𝑡ℎ = 2.8Am−2. As will be seen in 
Section 3.4.1, our computational model predicts that, in monopolar 
stimulation, this current density is achieved in the auditory nerve 
region closest to the active electrode when the input current amplitude 
is around 0.04mA. Henkin, Kaplan-Neeman, Muchnik, Kronenberg, and 
Hildesheimer (2003)’s work evaluates the threshold levels of stimu-
lation (T levels) and their variation over time. The observed values 
range from 60 to 80 current levels, equivalent to 0.05mA to 0.07mA for 
Cochlear devices. These values represent the minimum current required 
for patients to start auditory sensation, which implies the stimulation 
of a group of neurons. In our simulation case, it is essential to note that 
we are determining the threshold for a single neuron.

The number of neurons that exceeds 𝐽𝑡ℎ depends on the amplitude 
and pattern of the input currents 𝐢 (𝑡). To determine whether one current 
density profile is more focusing than another, we will normalize these 
profiles. To this end, we will choose the amplitude of 𝐢 (𝑡) that produces 
a maximum current density in the target region, 𝐽𝑚𝑎𝑥, of value one, that 
is, 𝐽𝑚𝑎𝑥 = 1Am−2. This topic will be discussed in detail in Section 3.4.

The above results suggest that we focus our efforts on achieving 
an input current pattern that results in a normalized current density 
distribution that is centered on the target area of the auditory nerve 
and that is as narrow as possible. This strategy differs from those 
proposed in previous works, in which they focused their efforts on 
achieving focused multipolar stimulation by imposing a certain pattern 
of potentials on electrodes or neurons.

3.2. Construction of an electrically realistic model

The first task we must perform is to build a FEM model that repre-
sents, as faithfully as possible, the potentials and current densities that 
appear in the cochlea when a certain channel is activated. Our model is 
not intended to simulate the double layer phenomenon, associated with 
the 𝐃 matrix, but to characterize the electrical behavior that allows 
us to calculate the potential and currents inside the cochlea, from 
which the conducting part of the transimpedance matrix, 𝐙𝑐 , is derived. 
To this end, we will implement a volume conduction model (see 
e.g., Callejón-Leblic, Lazo-Maestre, Fratter, Ropero-Romero, Sánchez-
Gómez et al., 2024; Hanekom & Hanekom, 2016; Malherbe, Hanekom, 
& Hanekom, 2015a, 2015b; de Miguel et al., 2022; Potrusil et al., 
2020).

To accurately model the currents produced by the CI, we should 
have precise knowledge of the geometry and electrical properties of 
all the tissues that make up the cochlea and the rest of the head. 
This knowledge is practically impossible due to the complexity of these 
structures and the variability that exists between patients. To bypass 
this problem we have opted to construct a simplified conductive model 
in which the cochlea is included in a sphere containing a medium 
whose conductivity, 𝜎𝑒𝑥𝑡, must be adjusted so that the matrix of the 
model, 𝐙𝑐,𝑚, and that of the patient under consideration, 𝐙𝑐,𝑝, are as 
similar as possible.
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Fig. 3. Surrounding sphere of the FEM model and a zoom of the implanted cochlea 
with perimodiolar inserted electrode array.

The model consists, in addition to 𝜎𝑒𝑥𝑡, of two additional parameters 
that must be adjusted to match both matrices. One of these parameters 
is the conductivity of a layer covering the outer surface of the cochlea, 
𝜎𝑏𝑜𝑛𝑒, which mimics the high-density bone covering the real cochlea. 
The construction of this layer involves a great difficulty from the 
geometrical and mesh generation point of view. Since the layer is thin 
and its conductivity is low compared to the surrounding tissue, it is 
possible to bypass the construction of the layer by imposing a contact 
impedance condition that emulates its effect.

The other parameter is the conductivity of the perilymph, 𝜎𝑝𝑒𝑟, 
whose values may vary between [1.0, 2.0] Sm−1, depending on the 
reference consulted Aebischer et al. (2021). To summarize, we have 
three fitting conductivities, 𝝈 = (𝜎𝑒𝑥𝑡, 𝜎𝑏𝑜𝑛𝑒, 𝜎𝑝𝑒𝑟), that are the variables 
of an objective function that measures the difference between 𝐙𝑐,𝑚 and 
𝐙𝑐,𝑝. The variation range of 𝜎𝑒𝑥𝑡 is [0.2, 1.42] Sm−1 and that of 𝜎𝑏𝑜𝑛𝑒 is 
[0.01, 0.1] Sm−1. The optimum conductivities, 𝝈𝑜𝑝𝑡, are those resulting 
from the minimization of this objective function. The minimization is 
carried out using an optimization procedure that will be described in 
the next Section 3.2.1.

The computational model of the cochlea includes an electrode array 
of 22 electrodes embedded in a silicone carrier similar to the Cochlear 
Nucleus™ Profile CI512 electrode array. The conductivity of the silicone 
of this carrier is 𝜎𝑠𝑖𝑙𝑖𝑐𝑜𝑛𝑒 = 1 × 10−14 Sm−1. The length and the radius of 
the array are 14mm and 0.2mm, respectively. The dimensions of the 
electrodes are 0.7 × 0.3 mm2 and the inter-electrode distance is 0.7mm.

Since we are interested in current densities in auditory nerve fibers, 
we have to include in our model an approximate representation of these 
fibers. This is achieved by means of a set of virtual neurons (VNs) which 
are just curves that imitate the trajectories of real neurons and are used 
to determine the values of current densities in realistic positions. The 
density of real neurons in the auditory nerve is much higher than the 
density of VNs in our computational model, so each VN represents a 
large number of real neurons.

3.2.1. Optimization procedure to determine the optimum conductivities
Our objective is to calculate the conductivities 𝝈 = (𝜎𝑒𝑥𝑡, 𝜎𝑏𝑜𝑛𝑒, 𝜎𝑝𝑒𝑟)

that minimize the difference between the impedance matrices of the 
patient, 𝐙𝑐,𝑝, and of the model, 𝐙𝑐,𝑚. If we denote ∆𝑐 = 𝐙𝑐,𝑝 − 𝐙𝑐,𝑚 as 
the difference of both matrices, the selected objective function is the 
Frobenius norm of 𝜟𝑐 =

(

𝛿𝑖𝑗
)

𝑅 =‖𝜟𝑐‖𝐹 =

√

√

√

√

√

𝐸
∑

𝑖=1

𝐸
∑

𝑗=1
|𝛿𝑖𝑗 |

2 (7)

where 𝐸 is the number of electrodes of the CI. Since clinical measure-
ments do not allow us to determine the diagonal terms of 𝐙𝑐,𝑝 and thus 
calculate 𝛿𝑖𝑖, we will consider 𝛿𝑖𝑖 = 0 in the calculations of ‖𝜟𝑐‖𝐹 .

Every evaluation of the objective function involves the execution of 
a FEM simulation of the model (as described in Section 3.2), to calculate 
5 
𝐙𝑐,𝑚. Therefore, an evolutionary algorithm as global optimizer with the 
only requirement of being able to evaluate the objective function (e.g. 
without any derivability condition), will be used. In order to speed-up 
the optimization of the evolutionary algorithm, which requires a high 
number of objective function evaluations, the process will be supported 
with the construction of a surrogate model with much lower evaluation 
cost (without the need to evaluate the FEM simulation); that is, a 
surrogate assisted evolutionary optimization will be afforded. The steps 
of the procedure to attain the optimum conductivities, 𝝈𝑜𝑝𝑡, in order to 
achieve a computational cochlear model approximately fitted to patient 
transimpedance matrix data are detailed as follows (see Fig.  4).

1. As initial sampling (Design of Experiments), a Latin Hypercube 
Sampling (Viana, 2015) with full factorial approach is performed 
to propose the set of conductivities {𝝈𝑖}𝑁𝑖=1, where 𝑁 is the 
number of samples.

2. The set {𝝈𝑖}𝑁𝑖=1 is introduced into our FEM model to obtain the 
set of the impedance matrices {𝐙𝑖

𝑐,𝑚}
𝑁
𝑖=1.

3. These FEM matrices are compared to the patient’s impedance 
matrix, 𝐙𝑐,𝑝, and the objective function defined in Eq.  (7) is 
evaluated. In this way, a set {𝑅𝑖}𝑁𝑖=1 is obtained which is used 
to train the Kriging surrogate model.

4. Several Kriging models were tested: four types of correlation 
functions were taken into account: exponential, squared ex-
ponential, matern 5/2, and matern 3/2; with constant, linear 
or quadratic model for the deterministic term, as explained 
in Bouhlel, Hwang, Bartoli, Lafage, Morlier et al. (2019). The 
Kriging model with best test set accuracy is chosen after a split 
of the whole sampling data consisting in training set and test set.

5. Once the initial surrogate model was built, a surrogate assisted 
evolutionary optimization was performed (Ruan, Li, Derbel, & 
Liefooghe, 2020) using differential evolution (Price, 2013) as 
global optimizer and the abovementioned Kriging model as sur-
rogate. Several independent executions were run, and the best 
solution �̄� was chosen to proceed with the next step.

6. A local search near the optimum �̄� was performed. For this 
purpose, we construct a reduced set of conductivities {�̄�𝑗}𝑀𝑗=1
centered on �̄�, where 𝑀 is the number of samples.

7. The set {�̄�𝑗}𝑀𝑗=1 is introduced into our FEM model to obtain the 
set of the impedance matrices {�̄�𝑗

𝑐,𝑚}𝑀𝑗=1.
8. Comparing these matrices with the clinical impedance matrix, 

𝐙𝑐,𝑝, we evaluate the objective function (7) to obtain {𝑅𝑗}𝑀𝑗=1. 
The optimum conductivity, 𝝈𝑜𝑝𝑡, is the one that minimizes {𝑅𝑖}𝑁𝑖=1
∪ {𝑅𝑗}𝑀𝑗=1 and the 𝐙

𝑜𝑝𝑡
𝑐,𝑚 matrix is the 𝐙𝑐,𝑚 matrix calculated with 

the conductivities 𝝈𝑜𝑝𝑡.

3.3. Conductive model

The conductive model is governed by the Laplace equation 

∇ ⋅ 𝜎∇𝜙 = 0 in 𝛺 (8)

where 𝜙 is the electric potential and 𝜎 is the conductivity. The domain 
𝛺 is formed by the cochlea and the surrounding sphere, see Fig.  3. The 
current density is given by 𝐉 = 𝜎𝑛𝐄, with 𝐄 = −∇𝜙, where 𝜎𝑛 is the 
conductivity of the 𝑛th tissue or fluid, which is considered to be purely 
resistive (real). The potential and currents involved in the model can 
be considered as the amplitudes of the corresponding time signals.

3.3.1. Boundary conditions
Active and disconnected electrodes
An active electrode is characterized by delivering a certain current 

𝐼0, while a disconnected electrode is one through which no current 
flows, it is a floating conductor. Thus, if 𝑆  be the surface of an 
𝑒
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Fig. 4. Flowchart of the process of optimizing the conductivities of the FEM model.
active or disconnected electrode delivering a current 𝐼0 (𝐼0 = 0 if it 
is disconnected), it must satisfy the condition 

− 𝜎 ∮𝑆𝑒

𝐧 ⋅ ▿𝜙𝑑𝑎. = 𝐼0 (9)

where 𝐧 is the outgoing unitary normal vector to 𝑆𝑒 and 𝜎 the conduc-
tivity of the surrounding media. Note that part of the electrodes are 
embedded in silicone, so 𝜎 ≈ 0 in this part of 𝑆𝑒, which means that 
almost no current is delivered through the silicone.

The constraint (9) is not properly a boundary condition, since it 
cannot be imposed directly in the differential equation. However, it 
can be easily transformed into a true-type boundary condition. As an 
example, if we have only a single electrode and it is active, we can 
impose the condition (9) as follows. Let 𝜙1 be the solution to Eq.  (8) 
with 𝑆𝑒 at potential 1V, the linearity of the Laplace equation requires 
that the solution of our problem must be 𝜙 = 𝜆𝜙1, with 𝜆 an appropriate 
constant. Note that this is because in both cases 𝑆𝑒 is a equipotential. 
The value of 𝜆 is calculated by imposing the condition (9).

The procedure to impose condition (9) is similar when there is more 
than one electrode and at least one of them is active, but in that case we 
need as many linearly independent solutions as electrodes. An example 
of how to impose condition (9) in the case of having one active and 
one floating electrode is shown in de Miguel et al. (2022).

Reference electrode and surrounding sphere
The reference electrode is taken as ground 𝜙 = 0. The boundary of 

the domain, 𝜕𝛺, is the surrounding sphere. It is considered to be an 
isolating surface 𝐉 ⋅ 𝐧 = 0, so that the boundary condition is 
𝜕𝜙
𝜕𝐧

= 0 in 𝜕𝛺 (10)

3.4. Objective functions for focusing and power consumption optimization

In this section we will define the objective functions used to maxi-
mize the focusing and minimize the power consumed by the CI. These 
are the two objective functions of a multiobjective optimization process 
that aims to determine the set of non-dominated solutions that provide 
the profile of currents feeding the electrodes to achieve the maximum 
possible focusing for a given power consumption, or alternatively seen, 
the minimum power for a given focusing.

3.4.1. Objective function for focusing
Multipolar stimulation aims to minimize the current dispersion that 

occurs when a particular channel is activated. Each channel should 
concentrate the current in an area of the auditory nerve as narrow as 
possible. Recall that a channel is the set of currents that the electrodes 
must deliver to excite a specific area of the auditory nerve. Thus, let us 
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consider that channel 𝑘 is responsible to excite the neural region close 
to electrode 𝑘. For each channel 𝑘, we look for the pattern of currents 
supplied by the electrodes that maximize the current densities reaching 
the VNs near electrode 𝑘 and minimize the current densities reaching 
the other VNs. Our goal is to design a suitable objective function for 
this task.

Let 𝜙𝑖 (𝐱), 𝑖 = 1,… , 𝐸, be the potential in any point 𝐱 ∈ 𝛺 due to 
the current source at electrode 𝑖 delivering an intensity 𝐼0 = 1A, where 
𝐸 is the number of electrodes of the CI. The linearity of Eq.  (8) allows 
any solution to be written as a linear combination of these solutions 

𝜙 (𝐱) =
𝐸
∑

𝑖=1
𝛼′𝑖𝜙𝑖 (𝐱) (11)

Consequently, we can write the current density as 

𝐉 (𝐱) =
𝐸
∑

𝑖=1
𝛼′𝑖𝐉𝑖 (𝐱) (12)

where 𝐉𝑖 = −𝜎∇𝜙𝑖. Note that the vector of coefficients (dimensionless) 
𝜶′ =

(

𝛼′𝑖
) are numerically equal to the vector of currents delivered by 

the electrodes.
To obtain a normalized profile of current densities in the modiolar 

region we must define appropriate coefficients 𝛼𝑖, so that the maximum 
current density over the VNs is unity. In this way, we can compare the 
focusing of different input current profiles.

Let us consider that, for a given set of coefficients 𝜶′ =
(

𝛼′𝑖
)

, 𝐽 𝑛
𝑚𝑎𝑥 is 

the maximum of ‖𝐉‖ at the 𝑛th VN, that is, 
𝐽 𝑛
𝑚𝑎𝑥 = max

𝐱∈VN𝑛
‖𝐉 (𝐱) ‖ (13)

Let 𝐽𝑚𝑎𝑥 = max1≤𝑛≤𝑁𝑛
𝐽 𝑛
𝑚𝑎𝑥 be the maximum current density reached 

by any of the 𝑁𝑛 VNs. The current density norm along the selected 
neurons for a monopolar stimulation of electrode 12 with 1mA is shown 
on the left side of Fig.  5, where 𝐽 𝑛

𝑚𝑎𝑥 and 𝐽𝑚𝑎𝑥 are represented by red 
dots and a cross, respectively. On the right side of Fig.  5, the values of 
𝐽 𝑛
𝑚𝑎𝑥 for all neurons are shown. The selected neurons of the left graph 
are indicated by red markers. In this case, 𝐽𝑚𝑎𝑥 = 67mAm−2 for an 
input current of 1mA, so to reach the value of 𝐽𝑡ℎ = 2.8Am−2, which 
gives rise to an action potential in the HH computational model, the 
input current must be 0.04mA, as commented in Section 3.1.

We define the vector of normalized current coefficients as 
𝜶 = 𝜶′

𝑁
(

𝐽𝑚𝑎𝑥
) (14)

where 𝑁 (

𝐽𝑚𝑎𝑥
) is the numeric value of 𝐽𝑚𝑎𝑥, that is, 𝑁

(

𝐽𝑚𝑎𝑥
)

=
𝐽𝑚𝑎𝑥 Am−2∕1Am−2 (dimensionless). The normalized coefficients 𝜶 pro-
duce a maximum current density of 1 A∕m2 in at least one of the 𝑁𝑛
VNs.
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Fig. 5. The graph on the left displays the norm of the current density along the selected 
neurons for monopolar stimulation of electrode 12 with 1mA. The red dots and cross 
indicate the values of 𝐽 𝑛

𝑚𝑎𝑥 and 𝐽𝑚𝑎𝑥, respectively. The graph on the right shows the 
maximum values of the current density for all neurons, with the red markers indicating 
the selected neurons.

From now on, we will write 𝐣 (𝐱) to refer to the normalized current 
density, that is, 

𝐣 (𝐱) =
𝐸
∑

𝑖=1
𝛼𝑖𝐉𝑖 (𝐱) (15)

The maximum of ‖𝐣 (𝐱) ‖ at the 𝑛th VN is 
𝑗𝑛𝑚𝑎𝑥 = max

𝐱∈VN𝑛
‖𝐣 (𝐱) ‖ (16)

and verify 0 ≤ 𝑗𝑛𝑚𝑎𝑥 ≤ 1.
The goal is to find the current coefficients 𝜶 such that 𝑗𝑛𝑚𝑎𝑥 (𝜶) be 1

at the VNs around the electrode 𝑘 (the target region) and 0 at the other 
VNs. More precisely, if VN (𝑘) = {𝑘1, 𝑘2 … , 𝑘𝑀} is the set of indexes 
of the 𝑀 VNs closer to electrode 𝑘 than to the other electrodes, the 
objective function is 
𝐹 (𝜶) = 𝑤

∑

𝑚∈VN(𝑘)

(

1 − 𝑗𝑚𝑚𝑎𝑥 (𝜶)
)2 +

∑

𝑛∉VN(𝑘)

(

𝑗𝑛𝑚𝑎𝑥 (𝜶)
)2 (17)

where 𝑤 is a constant parameter whose role is to balance the weight of 
the two summands of the objective function. The values of this function 
are included in the interval [0, 𝐹𝑚𝑎𝑥

]

, being 𝐹𝑚𝑎𝑥 = 𝑁𝑛 −𝑀 + 𝑤𝑀 , 𝑁𝑛
the total number of VNs and 𝑀 is the number of neurons belonging to 
VN (𝑘).

Note that the higher the values of 𝐹 (𝜶), the lower the focusing 
will be. Thus, this function gives us an idea of dispersion rather than 
focusing. However, we can construct an objective function for focusing 
as 
𝐹𝑐 (𝜶) = 𝐹𝑚𝑎𝑥 − 𝐹 (𝜶) (18)

so that the maximization of 𝐹𝑐 (𝜶) implies a maximization of the focus-
ing. The values of this function are included in the interval [0, 𝐹𝑚𝑎𝑥]. 
Therefore, we can pose the problem in two equivalent ways, either 
minimizing the dispersion 𝐹 (𝜶) or maximizing the focusing 𝐹𝑐 (𝜶). This 
optimization process must be performed for each channel. Obviously, 
each channel will have its own optimum vector of coefficients 𝜶.

3.4.2. Objective function for power
Our interest is now focused on calculating, for each channel, the 

power associated with its current pattern. We want to know whether 
a given current configuration consumes more or less power than an-
other. In particular, we want to compare the consumption of a given 
configuration with those corresponding to monopolar and multipolar 
stimulation. The power consumption depends on the waveform and the 
amplitude of the input signal. To set a criterion for power comparison, 
we will assume that two different configurations corresponding to the 
same channel must reach the same maximum current density. This 
requirement is achieved by working with the normalized coefficients 
𝜶.

Let 𝐼𝑢𝑛𝑖𝑡 (𝜔) = 
(

𝑖𝑢𝑛𝑖𝑡 (𝑡)
) be the current, in the frequency domain, 

corresponding to an input pulse 𝑖𝑢𝑛𝑖𝑡 (𝑡) of unit amplitude (1A peak 
value) and duration 𝑇 , similar to the one shown in Fig.  1.
7 
Then, the currents delivered by the electrodes for a given set of 
coefficients 𝜶 =

(

𝛼𝑖
) are 𝐢 (𝑡) = 𝑖𝑢𝑛𝑖𝑡 (𝑡)𝜶 in the time domain and 

𝐈 (𝜔) = 𝐼𝑢𝑛𝑖𝑡 (𝜔)𝜶 in the frequency domain.
The instantaneous power consumed by the CI due to the currents 

flowing through the electrolytes and tissues of the inner ear and head 
is 𝐢(𝑡)T𝐯𝑝ℎ (𝑡) = 𝐢T (𝑡)𝐙𝑐 𝐢 (𝑡), where 𝐙𝑐 is the transimpedance matrix 
computed by FEM (𝐙𝑐 ≡ 𝐙𝑐,𝑚 in this context). Therefore, the average 
power of the pulse is 

𝑃𝑎𝑣𝑔 = 1
𝑇 ∫

𝑇

0
𝐢T (𝑡)𝐙𝑐 𝐢 (𝑡) 𝑑𝑡 =

= 𝜶T𝐙𝑐𝜶
(

1
𝑇 ∫

𝑇

0
𝑖2𝑢𝑛𝑖𝑡 (𝑡) 𝑑𝑡

)
(19)

The last integral term of Eq.  (19) is a constant that only depends on the 
specific characteristic of the input pulse. It can be calculated through 
𝐼𝑢𝑛𝑖𝑡 (𝜔) by applying the Plancherel’s theorem 

𝐾𝑖𝑛𝑝𝑢𝑡 =
1
𝑇 ∫

𝑇

0
𝑖2𝑢𝑛𝑖𝑡 (𝑡) 𝑑𝑡 =

1
2𝜋𝑇 ∫

∞

−∞
|𝐼𝑢𝑛𝑖𝑡 (𝜔) |

2𝑑𝜔 (20)

Thus, the average power can be written as 
𝑃𝑎𝑣𝑔 = 𝐾𝑖𝑛𝑝𝑢𝑡𝜶T𝐙𝑐𝜶 (21)

Let 𝜶0 be the normalized current coefficients of a configuration 
that we will take as a reference. The objective function for the power 
consumption (𝑃 ) is defined as the ratio between the power of the 
configuration under study versus the power, 𝑃𝑎𝑣𝑔,0, of the reference 
input 𝜶0. 

𝑃 (𝜶) =
𝑃𝑎𝑣𝑔

𝑃𝑎𝑣𝑔,0
=

𝜶T𝒁𝑐𝜶
𝜶T
0𝒁𝑐𝜶0

(22)

We consider as reference the phased-array stimulation (PA) (van 
den Honert & Kelsall, 2007). Specifically, if 𝐯𝑘 = (0,… , 1,… , 0) is the 
voltage pattern of the 𝑘th channel of the PA, the normalized current 
pattern of this channel is given by 𝜶PA ≡ 𝜶0 = 𝑁

(

𝐽−1
𝑚𝑎𝑥𝐙

−1
𝑐 𝐯𝑘

)

, where 
𝐽𝑚𝑎𝑥 is the maximum current density in any VN corresponding to the 
input 𝐙−1

𝑐 𝐯𝑘. From now on 𝑃𝑎𝑣𝑔,0 becomes 𝑃𝑎𝑣𝑔,PA.
This objective function measures the power consumed in the per-

ilymph by a CI fed by a current pattern 𝜶, compared to the power 
consumed by a phased-array stimulation. Note that this expression is 
independent of the particular waveform of the input 𝑖𝑢𝑛𝑖𝑡 (𝑡); it only 
depends on the profile of currents feeding the electrodes, 𝜶, and the 
resistive matrix 𝐙𝑐 .

The expression (19) gives us the power dissipated in the electrolyte 
and tissues. However, this is only a portion of the total power consumed 
by a CI. A complete study should include the consumption associated 
with the double layer, but in that case the objective function would 
no longer be independent of 𝑖𝑢𝑛𝑖𝑡 (𝑡). A comparative study between 
the power consumed by the electrodes with and without taking into 
account the double layer is shown in Appendix.

Furthermore, the coil, processor and other electronic components 
consume a significant portion of power that has not been taken into 
account in the design of our target function. The power consumed by 
these elements depends on the particular CI manufacturer and model 
under consideration. Currently, we do not possess the necessary data, 
and as a result, we were unable to incorporate it into this study. Should 
such data become available, we would be able to adjust the power 
objective function to accommodate this additional power.

3.5. Multiobjective optimum design method

When optimizing two or more objective functions, a multiobjective 
optimization is required when they are in conflict (Deb, 2001); improv-
ing the optimized value of one objective function is only possible if 
worsening the value of other optimized objective function. As is our 
case, improving the focusing is possible only when worsening power 
consumption (alternatively improving the value of power consumption 
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is possible when worsening focusing). Therefore, in a multiobjective 
optimization procedure instead of a single optimum solution, it appears 
a set of equally optimum solutions called non-dominated solutions, 
which belong to the so called Pareto set (the objective function values 
belonging to the Pareto set were called Pareto front). In this work, 
the multiobjective optimization procedure aims to determine the non-
dominated solutions (given each by its profile of currents feeding the 
electrodes) to achieve the maximum possible focusing for a given 
power consumption, or equivalently, to achieve the minimum power 
consumption for a given focusing.

Since the late nineties and first years of 2000s, efficient evolu-
tionary algorithms for multiobjective optimization have been devel-
oped (Emmerich & Deutz, 2018) and applied in many real world ap-
plications (Coello, VanVeldhuizen, & Lamont, 2007; Greiner, Periaux, 
Quagliarella, Magalhaes-Mendes, & Galván, 2018), solving computa-
tional engineering problems (Greiner, Gaspar-Cunha, Hernandez-Sosa, 
Minisci, & Zamuda, 2022; Greiner, Periaux, Emperador, Galván, & 
Winter, 2017), as e.g. biomedical engineering applications (Carbonaro, 
Lucchetti, Audenino, Gries, Vaughan et al., 2023), and particularly 
for cochlear implant optimum design (de Miguel, Escobar, Greiner, 
& Ramos-Macías, 2018). Those population based global optimization 
methods are capable to obtain the whole set of non-dominated solutions 
in a single run of the algorithm without any other requirement to 
the objective function than being accurately computable (e.g. neither 
continuity nor differentiability conditions were needed, neither further 
computations of first nor second derivatives), what has fostered their 
successful application in real-world problems (Osaba et al., 2021).

Among the state of the art multiobjective evolutionary algorithms 
to solve two objective optimization problems, we use the most cited 
and applied (as in Deb 2023): the Non-dominated Sorting Genetic 
Algorithm NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002). It uses 
a selection based on non-dominated set ordering, and inside each non-
dominated set, a crowding distance to foster diversity of solutions in 
the functional space; as well as simulated binary crossover (SBX) and 
polynomial mutation for real variable problems, as it is our case. The 
NSGA-II implementation of the Platyplus framework (Hadka, 2024) has 
been used in this manuscript. It is a recognized and used framework 
by the evolutionary algorithms scientific community, as seen, e.g. 
in Brockhoff and Tušar (2019). In this manuscript, objective functions 
𝐹𝑐 (𝜶) (focusing) and 𝑃 (𝜶) (power consumption) as described in previ-
ous Section 3.4, were simultaneously optimized, maximizing focusing 
and minimizing power consumption, respectively; therefore, the set of 
non-dominated solutions towards the lower right part of the functional 
space is searched.

As previously suggested and demonstrated in the efficient resolution 
of certain engineering problems (such as structural frame optimiza-
tion (Greiner, Emperador, & Winter, 2004), in noise barrier shape opti-
mization (Toledo, Aznárez, Greiner, & Maeso, 2017), or in high-speed 
railway train timetable rescheduling (Ding et al., 2024)), inserting a 
high-quality solution into the initial population of the multiobjective 
evolutionary algorithm could enhance the non-dominated final de-
signs. Recent research has demonstrated the effectiveness of this idea 
on various multiobjective mathematical benchmarks in enhancing the 
quality of the final front, even when only a single corner solution was 
used (Gong, Nan, Pang, Zhang, & Ishibuchi, 2023).

Here, we adopt this approach and propose a memetic algorithm 
for the purpose of obtaining high-quality solutions to each individual 
objective fitness function (focusing 𝐹𝑐 , and power consumption 𝑃 ). 
Specifically, the methodology involves the integration of a differential 
evolution (DE) (Price, 2013; Virtanen, Gommers, Oliphant et al., 2020) 
with the L-BFGS-B deterministic optimization technique (Zhu, Byrd, 
Lu, & Nocedal, 1997). To the best of the authors’ knowledge, this 
approach has not been previously proposed, evaluated or demonstrated 
for the purpose of injecting high quality solutions into a multiobjec-
tive optimization procedure. The implementation of the Python SciPy 
framework (Virtanen et al., 2020) has been used in this manuscript. 
8 
Fig. 6. Flowchart of the multiobjective optimization.

Fig. 7. Mesh of the Cochlea 1.

This method is referred as follows as DE+BFGS Injected. This has 
allowed us to obtain best individuals of each fitness function and insert 
them into the initial population of the multiobjective algorithm. Key 
advantages of this approach will be discussed in the next Section 4. 
Particularly, Section 4.3 shows experimental results comparing a Ran-
dom initial population, the DE+BFGS Injected strategy, and to further 
investigate the influence of the BFGS stage, a DE strategy without BFGS. 
Fig.  6 shows a flowchart of the described optimization process, where 
the left part represents the solutions injected into the initial population 
and the right part represents the multiobjective optimization process. 

4. Test cases and experimental results

In the first Section 4.1 a description of the implemented test cases 
is given. In Section 4.2 detail of optimization methods is described. 
Section 4.3 presents a comparison of initial population strategies. Then, 
experimental results of optimum focusing are presented in Section 4.4. 
Finally, experimental results of multiobjective optimization are shown 
in Section 4.5.

4.1. Description of test cases

Two FEM cochlear geometries with perimodiolar insertion of the 
electrode array were taken into account; they are named Cochlea 1 and 
Cochlea 2. Both geometries are based on meshes taken from the proce-
dure described in the work of Mangado et al. (2018). A representation 
of the mesh of Cochlea 1 is shown in Fig.  7.

To solve the model described in Section 3.3, we have used COMSOL 
Multiphysics® 5.6. Table  1 shows the dimensions of the cochleas, and the 
number of quadratic tetrahedral elements and degrees of freedom for 
each FEM mesh. Each evaluation takes an average of 462 s in an Intel 
Core i9–10900X 3.70GHz. The conductivities of each one were adjusted 
to a different patient transimpendance matrix following the procedure 
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Table 1
Spatial dimensions in mm (𝑥, 𝑦, 𝑧), number of quadratic tetrahedral elements (𝑁𝑒) and 
degrees of freedom (𝑑𝑓 ) for each FEM mesh.
 Case 𝑥 𝑦 𝑧 𝑁𝑒 𝑑𝑓  
 Cochlea 1 6.654 7.796 4.289 946110 1374899 
 Cochlea 2 6.481 6.567 3.707 800747 1170224 

Table 2
Optimum conductivities 𝝈𝑜𝑝𝑡 in Sm−1 and 𝑅 (Eq.  (7)) of the two cochlear 
models.
 Case 𝜎𝑒𝑥𝑡 𝜎𝑏𝑜𝑛𝑒 𝜎𝑝𝑒𝑟 𝑅  
 Cochlea 1 0.4393 0.0628 1.565 969.0  
 Cochlea 2 1.1265 0.0944 1.982 1161.3 

described in Section 3.2. The values of 𝝈𝑜𝑝𝑡 and 𝑅 (Eq.  (7)) of each 
model are shown in Table  2. If we take into account that 𝑅 of Table  2 
provides a global error, and that the transimpedance matrix has 22 × 22 
elements, the average error per element is 2.0Ω for Cochlea 1 and 2.4Ω
for Cochlea 2.

4.2. Description of optimization procedure

After defining the model, evaluations of the objective functions 
are calculated by following the steps outlined in Section 3.4. Each 
evaluation pair (𝐹𝑐 and 𝑃 ) takes an average of 0.78ms in an Intel Core 
i9–10900X 3.70GHz.

A multiobjective optimization with NSGA-II as described in Sec-
tion 3.5 was applied for each cochlear model. Standard parameters 
were applied: a population size of 100 individuals, SBX crossover prob-
ability of 1.0 with distribution index of 15 and polynomial mutation 
with mutation rate of one divided by the number of variables of the 
chromosome (constituted by the 22 current coefficients 𝜶 of each elec-
trode of the CI) with distribution index of 20. In the following sections, 
when the current coefficients 𝜶 are mentioned, they are rescaled to the 
interval [−1, 1].

As stated in Section 3.5, the initial population of the multiobjective 
evolutionary algorithm is injected with high quality corner solutions. 
These solutions are obtained by executing a memetic DE with a pop-
ulation size of 110 individuals and 100 generations as the stopping 
criterion for each objective function. After the convergence of the DE, 
a L-BFGS-B optimization (Virtanen et al., 2020; Zhu et al., 1997) is 
executed taking as initial solution the best DE individual. This process 
is repeated five times, and the best corner individuals are added to the 
initial population of the NSGA-II. This method, referred to as DE+BFGS 
Injected, is compared to an initial random population (referred to as 
Random), and to DE without the L-BFGS-B step (referred to as DE 
Injected) to further investigate the influence of the BFGS stage, in the 
following Section 4.3.

4.3. Results: Initial population strategy

Twenty-one independent runs were conducted, each consisting of 
210,000 evaluations of the evolutionary algorithm. The NSGA-II was 
used with 2100 and 1000 generations as stopping criteria for the 
Random and DE Injected strategies, respectively. Some representative 
electrodes (3, 5, 6, 10, 14, 16 and 17) were chosen as benchmarks, 
for both Cochlea 1 and Cochlea 2 test cases. The hypervolume indica-
tor (Zitzler, Thiele, Laumanns, Fonseca, & da Fonseca, 2003) was used 
to compare the methods, with scaling values of 110 for focusing (𝐹 ) 
and 3 for power consumption (𝑃 ), and a reference point of (2,2). The 
results of the Friedman test are presented Table  3, which confirms the 
rejection of the null hypothesis and indicates that some methods are 
superior to others. In all table columns, DE+BFGS Injected is the best 
ordered strategy, followed by Random, and ending with DE Injected. 
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Fig. 8. Boxplot of final hypervolume of the 21 independent executions for each initial 
population strategy. Electrode 10. Cochlea 1.

Fig. 9. Non-dominated solutions of the median execution (out of 21) ordered in terms 
of hypervolume. Comparing random initial population with injected DE+BFGS corner 
solutions. Electrode 10. Cochlea 1.

As example, Fig.  8 shows a boxplot of the final hypervolume distri-
bution of the methods for Electrode 10 of Cochlea 1, indicating that 
DE+BFGS performs better than Random and the latter is better than 
DE Injected. Table  4 presents the results of the Bergmann-Hommel’s 
posthoc procedure (Garcia & Herrera, 2008), where paired comparisons 
with a p-value lower than 0.05 are considered significant. Therefore, 
it is confirmed that the best ordered algorithm in the Friedman test, 
the DE+BFGS injected solution outperforms all the other compared 
algorithms. Additionally, the Random initial population is better or not 
worse than the DE injected solution. As example, Fig.  9 compares the 
median non-dominated fronts (the eleventh front ordered in terms of 
the hypervolume indicator) of Random and DE+BFGS injected methods 
for Electrode 10 of Cochlea 1. It is evident that the most challenging 
non-dominated solutions to attain in this problem are those located in 
the upper right part of the front; i.e., the solutions with higher focusing. 
These solutions are only attained in the yellow line (belonging to the 
DE+BFGS injected method) and are the ones that determine the higher 
value of hypervolume than the other methods, as shown in Fig.  8.

The non-dominated front length of the median front (eleventh front 
ordered in terms of HV out of twenty-one runs) of the Random strategy 
was compared in percentage with the DE+BFGS Injected strategy in 
Table  5. In all cases, the non-dominated front length of the Random 
strategy is shorter, ranging from 36.4% to 62.9% in the electrodes of 
Cochlea 1, and from 51.5% to 86.5% in the electrodes of Cochlea 2 
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Table 3
Friedman Test: Average rankings of the algorithms based on hypervolume final distribution. Comparing initial population strategies in Electrodes 
3, 5, 6, 10, 14, 16 and 17. Cochlea 1 and Cochlea 2.
 Electrode Number (Cochlea 1) El-3 El-5 El-6 El-10 El-14 El-16 El-17  
 DE+BFGS Injected 1.00 1.00 1.00 1.00 1.00 1.00 1.00  
 Random 2.00 2.00 2.43 2.00 2.00 2.05 2.10  
 DE Injected 3.00 3.00 2.57 3.00 3.00 2.95 2.90  
 p-value 7.83 × 10−10 7.83 × 10−10 1.30 × 10−7 7.83 × 10−10 7.83 × 10−10 2.00 × 10−9 4.65 × 10−9 
 Electrode Number (Cochlea 2) El-3 El-5 El-6 El-10 El-14 El-16 El-17  
 DE+BFGS Injected 1.00 1.00 1.19 1.00 1.00 1.00 1.10  
 Random 2.00 2.00 1.95 2.10 2.00 2.05 2.14  
 DE Injected 3.00 3.00 2.86 2.90 3.00 2.95 2.76  
 p-value 7.83 × 10−10 7.83 × 10−10 4.48 × 10−7 4.65 × 10−9 7.83 × 10−10 2.00 × 10−9 3.36 × 10−7 
Table 4
Adjusted p-values. Bergmann-Hommel’s posthoc procedure. Comparing initial population strategies in Electrodes 3, 5, 6, 10, 14, 16 and 17. Cochlea 1 
and Cochlea 2.
 Electrode Number (Cochlea 1) El-3 El-5 El-6 El-10 El-14 El-16 El-17  
 DE In.vs. DE+BFGS In. 2.74 × 10−10 2.74 × 10−10 1.06 × 10−6 2.74 × 10−10 2.74 × 10−10 7.53 × 10−10 2.02 × 10−9 
 Random vs. DE+BFGS In. 1.19 × 10−3 1.19 × 10−3 3.67 × 10−6 1.19 × 10−3 1.19 × 10−3 6.87 × 10−4 3.87 × 10−4 
 Random vs. DE In. 1.19 × 10−3 1.19 × 10−3 0.64 1.19 × 10−3 1.19 × 10−3 3.37 × 10−3 8.71 × 10−3 
 Electrode Number (Cochlea 2) El-3 El-5 El-6 El-10 El-14 El-16 El-17  
 DE In.vs. DE+BFGS In. 2.74 × 10−10 2.74 × 10−10 1.99 × 10−7 2.02 × 10−9 2.74 × 10−10 7.53 × 10−10 1.99 × 10−7 
 Random vs. DE+BFGS In. 1.19 × 10−3 1.19 × 10−3 3.37 × 10−3 3.87 × 10−4 1.19 × 10−3 6.87 × 10−4 6.87 × 10−4 
 Random vs. DE In. 1.19 × 10−3 1.19 × 10−3 1.36 × 10−2 8.71 × 10−3 1.19 × 10−3 3.37 × 10−3 4.49 × 10−2 
Table 5
Comparing median non-dominated front length of Random initial population NSGA-II versus DE+BFGS Injected in Electrodes 
3, 5, 6, 10, 14, 16 and 17. Cochlea 1 and Cochlea 2. Length of DE+BFGS Injected strategy is 100%.
 Electrode Number (Cochlea 1) El-3 El-5 El-6 El-10 El-14 El-16 El-17  
 Random 56.6% 36.4% 38.2% 62.5% 44.3% 54.7% 62.9% 
 Electrode Number (Cochlea 2) El-3 El-5 El-6 El-10 El-14 El-16 El-17  
 Random 58.1% 78.1% 51.5% 86.5% 67.7% 80.8% 83.8% 
(being 100% the length of the DE+BFGS Injected non-dominated front, 
in each case). As further analysis, the improvements in terms of HV 
shown in the previous paragraph by the DE+BFGS Injected strategy are 
mainly explained by the higher length of the non-dominated front. 

To summarize the results of this Section 4.3 in this cochlear implant 
multiobjective optimization problem: they show a robust behavior in 
Cochlea 1 and Cochlea 2 and their electrodes, where the proposed 
algorithm (DE+BFGS Injected) consistently outperforms the Random 
initial population, allowing to obtain enhanced non-dominated solu-
tions. In terms of the handled problem it is particularly relevant to 
be able to obtain a larger (extended) non-dominated front with higher 
focusing solutions, which is associated with better hearing frequency 
discrimination and therefore, an improvement in hearing quality could 
potentially be achieved with the method proposed in Section 3.5. 

4.4. Results: Optimum focusing solutions

First, we present results of the optimum focusing (OF) solutions 
attained, comparing them with the phased-array (PA) and monopolar 
(MP) stimulation.

Figs.  10 and 11 represent current densities 𝑗𝑛𝑚𝑎𝑥. They include 
seven representative electrodes out of the twenty-two constituting 
the cochlear implant distributed along the cochlea, in Cochlea 1 and 
Cochlea 2, respectively. The value of 𝑀 of these electrodes varies from 
5 to 10, being 𝑀 the cardinal of the VNs closer to electrode 𝑘 than 
to the other electrodes, as explained in Section 3.4.1. A total of 𝑁𝑛
equal to 151 VNs were distributed throughout the cochlea in each 
test case, as shown in the abscissa axis of the figures. It is clearly 
appreciable how the optimum focusing solutions (black lines) are able 
to fit properly towards the objective functions (red lines), being those 
optimum profiles narrower than phased-array stimulation (green lines) 
and they narrower than the monopolar (magenta lines) in all cases.
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Corresponding values of the objective functions for focusing 𝐹𝑐
and power consumption 𝑃  are shown in Table  6 for Cochlea 1 and 
Cochlea 2. As expected, the higher the focusing, the higher the power 
consumption. In all cases focusing and power consumption increase 
from monopolar to phased-array and from phased-array to optimum 
focusing solutions.

From all these results, it has been evidenced the capability of the 
methodology to improve phased-array stimulation in CI for maximizing 
the focusing 𝐹𝑐 .

4.4.1. Extracting design principles
The analysis of optimum attained solutions could lead to interesting 

design principles, as have being exposed in optimum design of engi-
neering problems through the innovization principle in Deb, Bandaru, 
Greiner, Gaspar-Cunha, and Tutum (2014). With this purpose for fo-
cusing maximization, the optimum values of the current coefficients 𝜶
of each electrode from 3 to 17 have been superimposed in Figs.  12 and
13, respectively for Cochlea 1 and Cochlea 2. In each case, the relative 
position 0 belongs to each central active electrode.

As observed in both figures, a clear shared pattern emerges that 
allows the focusing maximization: the previous and posterior adjacent 
values (relative positions −1 and +1, respectively) with respect to the 
central active electrode (relative position 0) are negative and decreased 
values; the next adjacent values (relative positions −2 and +2, respec-
tively) are positive and again decreased values; and so on, alternating 
signs and continuing in the decrement of the values of the coefficients. 
As relevant shared values of the pattern in Cochlea 1 and Cochlea 2, we 
choose the median of the distribution of the values belonging to relative 
positions: −4, −3, −2, −1, 0, +1, +2, +3, +4. These median patterns 
are shown in Table  7. Distribution of current coefficients of this median 
pattern common to all electrodes versus those of the phased-array 
stimulation (e.g. of Electrode 10) of both test cases are shown in Fig. 
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Fig. 10. Distribution of current density 𝑗𝑛𝑚𝑎𝑥 for OF, MP and PA. compared with the target objective function profile (in red). Electrodes 3, 5, 6, 10, 14, 16 and 17 of Cochlea 1.
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Fig. 11. Distribution of current density 𝑗𝑛𝑚𝑎𝑥 for OF, MP and PA. compared with the target objective function profile (in red). Electrodes 3, 5, 6, 10, 14, 16 and 17 of Cochlea 2.
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Fig. 12. Distribution of current coefficients 𝜶 of the OF solutions (rescaled to interval [−1, 1]) for electrodes 3 to 17 of Cochlea 1. Relative numbering of the electrodes has been 
adopted, so that the maximum 𝜶 is associated with relative position 0.
Fig. 13. Distribution of current coefficients 𝜶 of the OF solutions (rescaled to interval [−1, 1]) for electrodes 3 to 17 of Cochlea 2. Relative numbering of the electrodes has been 
adopted, so that the maximum 𝜶 is associated with relative position 0.
Fig. 14. Current coefficients 𝜶 (rescaled to interval [−1, 1]) of the median pattern 
compared with PA. Example for electrode 10, Cochlea 1 and Cochlea 2.

14. A clear difference emerges between both configurations of Cochlea 
1 and Cochlea 2 handled in this manuscript, as in the phased-array 
stimulation only negative values of the coefficients remain, without 
sign oscillation.
13 
Fig. 15. Distribution of current density 𝑗𝑛𝑚𝑎𝑥 for median pattern, OF and PA. compared 
with the target objective function profile (in red). Electrode 10 of Cochlea 1.

If using those pattern values as current stimulation in the CI, Figs. 
16 and 17 show that the focusing slightly diminishes with respect to 
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Table 6
Optimum values of the objective functions of focusing, 𝐹𝑐 , and power, 𝑃 , for Cochlea 
1 and Cochlea 2. Electrodes 3, 5, 6, 10, 14, 16 and 17.
 Electr. Stimul. Cochlea 1 Cochlea 2

𝐹𝑐 𝑃 𝐹𝑐 𝑃  
MP 269.61 0.158 272.92 0.120 

3 PA 292.76 1.000 293.98 1.000 
OF 297.29 2.920 296.39 2.729 
MP 267.08 0.215 268.69 0.193 

5 PA 291.10 1.000 294.40 1.000 
OF 293.41 3.365 296.53 3.060 
MP 266.57 0.232 269.32 0.215 

6 PA 293.09 1.000 294.49 1.000 
OF 296.66 4.774 296.43 2.234 
MP 266.57 0.274 268.86 0.302 

10 PA 290.26 1.000 290.57 1.000 
OF 295.01 3.003 295.20 2.611 
MP 277.74 0.243 279.23 0.243 

14 PA 293.41 1.000 295.12 1.000 
OF 298.08 6.465 297.82 3.667 
MP 281.97 0.259 281.90 0.281 

16 PA 295.43 1.000 293.60 1.000 
OF 298.79 4.052 297.30 2.863 
MP 280.21 0.280 281.67 0.311 

17 PA 293.34 1.000 292.88 1.000 
OF 297.81 3.564 293.63 1.831 

ig. 16. Focusing values (𝐹𝑐 ) of median pattern versus OF and PA. Electrodes 3 to 17
f Cochlea 1.

he optimum solution. However, this median pattern is able to improve 
he focusing of the phased-array stimulation solutions consistently in 
oth test cases Cochlea 1 and Cochlea 2, with the only exception of 
lectrodes 3, 4, 5 and 6 of Cochlea 2. As seen in relative position 
15 of Fig.  13, the dispersion of solutions in this position is larger in 
ochlea 2 than in Cochlea 1. These values belong to electrodes 3, 4, 
 and 6 of Cochlea 2, whose larger variability decreases the focusing 
f the median pattern in Cochlea 2. Therefore, from these results, the 
attern of current coefficients is more reliable when their boxplots in 
he extreme ranges remain with low dispersion.
The direct relationship between the focusing 𝐹𝑐 and narrowness of 

he profile of the current densities 𝑗𝑛𝑚𝑎𝑥 along the VNs, as shown previ-
usly in Figs.  10 and 11, can be observed in Fig.  15. When comparing 
hased-array stimulation (magenta), median pattern (blue) and opti-
um focusing (black) curves, the median pattern clearly outperforms 
hased-array stimulation.
From all these results, it has been evidenced the capability of the 
ethodology to lead to design principles for improving phased-array 
timulation to maximize focusing in CI: a pattern with alternating signs 
nd decreased values of the current coefficients.
14 
Fig. 17. Focusing values (𝐹𝑐 ) of median pattern versus OF and PA. Electrodes 3 to 17
of Cochlea 2.

Fig. 18. Non-dominated solutions, maximizing focusing 𝐹𝑐 and minimizing power 
consumption 𝑃 , of Electrodes 3, 10, and 17 of Cochlea 1.

4.5. Results: Multiobjective optimization solutions

The outcome of the multiobjective optimization is the set of non-
dominated solutions of maximum focusing 𝐹𝑐 and minimum power con-
sumption 𝑃 . All of them are equally optimum from the mathematical 
point of view.

In Fig.  18 for Cochlea 1 these solutions are represented as lines for 
some chosen electrodes (3, 10, 17). While the lower left extreme of each 
line represents the solution with lower power consumption 𝑃 , the upper 
right extreme of each line represents the solution with higher focusing 
𝐹𝑐 . The line represents the values of maximum focusing for each value 
of power consumption. Alternatively, the line also represents the values 
of minimum power consumption for each value of focusing.

In Fig.  19 we can zoom in to compare monopolar (crosses) and 
phased-array (asteriscs) solutions versus the non-dominated solutions 
(line). Clearly, there are non-dominated solutions that improve simul-
taneously 𝐹𝑐 and 𝑃  in each case (see all those solutions represented by 
the line that are located lower and more to the right). Therefore, the 
multiobjective optimization provides a set of optimum solutions that 
improve the phased-array stimulation in both objective functions for 
all cases.

As an example, Fig.  20 shows the case of electrode 10 of Cochlea 
1. Three representative non-dominated solutions named Solution 1, 2
and 3 were selected. Solution 1 improves the phased-array stimulation 
in both objective functions 𝐹𝑐 (291.20 is higher than 290.26) and 
𝑃  (0.96645 is lower than 1.0). Solution 3 improves the monopolar 
solution in both objective functions (279.20 is higher than 266.57 in 
focusing, and 0.24269 is lower than 0.27396 in power consumption). 
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Table 7
Median pattern current coefficients 𝜶 rescaled to interval [−1, 1].
 Test case −4 −3 −2 −1 0 +1 +2 +3 +4  
 Cochlea 1 0.02398 −0.08982 0.18915 −0.63481 1.0000 −0.52722 0.13819 −0.05752 0.01610 
 Cochlea 2 0.01712 −0.05814 0.10859 −0.58626 1.0000 −0.43001 0.08941 −0.04082 0.00710 
Fig. 19. Zoom of Fig.  18 including MP (crosses) and PA (asteriscs).

Fig. 20. Some selected representative non-dominated solutions: Solution 1, Solution 2
and Solution 3 of Electrode 10 of Cochlea 1.

An intermediate Solution 2 attains almost the focusing of the phased-
array stimulation (value of 287.88 versus 290.26) with only half of 
the power consumption (0.56897 versus 1.0). All the values of the 
objective functions of these solutions are shown in Table  8. This case 
is an example that shows the usefulness of the proposed multiobjective 
optimization methodology for improving CI in terms of both focusing 
and power consumption, simultaneously.

Fig.  21 shows the direct relationship between the focusing 𝐹𝑐 and 
the narrowness of the profile of the current densities 𝑗𝑛𝑚𝑎𝑥 along the 
VNs for Solutions 1 (black), 2 (green) and 3 (magenta). As can be seen, 
larger values of 𝐹𝑐 imply higher narrowness.

In Figs.  22, 23 and 24, we compare current coefficients 𝜶 of repre-
sentative non-dominated Solutions 1, 2 and 3 with respect to monopo-
lar, phased-array stimulation and optimum focusing solutions, respec-
tively. Note in Figs.  22 and 23 that only slight changes in 𝜶 improve 
both objective functions.

From all these results, it was shown the capability of the proposed 
methodology to lead to non-dominated solutions to improve simultane-
ously 𝐹  and 𝑃 , even with respect to the phased-array stimulation.
𝑐

15 
Table 8
Multiobjective optimization: non-dominated Solutions 1, 2 and 
3. Electrode 10. Cochlea 1.
 Electrode Solution 𝐹𝑐 𝑃  
 MP 266.57 0.27396 
 PA 290.26 1.00000 
 10 Solution 1 291.20 0.96645 
 Solution 2 287.88 0.56897 
 Solution 3 279.20 0.24269 

Fig. 21. Distribution of current density 𝑗𝑛𝑚𝑎𝑥 for non-dominated solutions: Solution 1, 
Solution 2 and Solution 3, compared with the target objective function profile (in red). 
Electrode 10 of Cochlea 1.

Fig. 22. Current coefficients 𝜶 (rescaled to interval [−1, 1]) of Solution 3 (which 
improves simultaneously 𝐹𝑐 and 𝑃 of MP), compared with MP. Example for electrode 
10, Cochlea 1.

5. Discussion

5.1. Threshold current density

As previously explained, one of our objectives has been to construct 
an objective function, 𝐹𝑐 , (Eq.  (18)) that allows obtaining a stimulation 
pattern that maximizes the focusing. Furthermore, 𝐹𝑐 allows us to 
compare the degree of focusing of other stimulation patterns, such as 
monopolar (MP) or phased-array (PA), as shown in Figs.  10 and 11. 
Therefore, the proposed focusing 𝐹𝑐 has been shown in Sections 4.4
and 4.5 to be effective in terms of the assessment of the focusing of 
the current density distribution, and its maximization attains improved 
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Fig. 23. Current coefficients 𝜶 (rescaled to interval [−1, 1]) of Solution 1 (which 
improves simultaneously 𝐹𝑐 and 𝑃 of PA), compared with PA. Example for electrode 
10, Cochlea 1.

Fig. 24. Current coefficients 𝜶 (rescaled to interval [−1, 1]) of non-dominated solutions: 
Solution 1, Solution 2 and Solution 3, compared with OF. Example for electrode 10, 
Cochlea 1.

profiles of the current density, more narrow and concentrated in the 
target area. Our interest lies in determining whether one stimulation 
pattern is more focusing than another, but not on knowing whether or 
not the hearing threshold level is reached. This threshold is determined 
by 𝐽𝑡ℎ, but this parameter is difficult to calculate and depends on the 
state of preservation of the auditory nerve, and therefore on the patient 
under consideration. Furthermore, it must be taken into account that 
the value of 𝐽𝑡ℎ given in Eq.  (6) is deduced from the experimental 
law (5), and is therefore subject to inaccuracies, as it is shown in Joucla, 
Branchereau, Cattaert, and Yvert (2012).

Some authors (see, for example, Nowak and Bullier 1996 and Mah-
nam, Hashemi, and Grill 2008) consider a slightly different version of 
Eq.  (6), so that, 𝐼𝑡ℎ = 𝐼0 + 𝐾𝑒𝑟2, where 𝐼0 is the current necessary to 
activate the neuron when the electrode and the neuron are almost in 
contact. In this case, the threshold current density would no longer be 
constant, but rather varies with the distance from the source, although 
for large distances it coincides with the value given in Eq.  (6).

5.2. Comparing with a model based on active neurons

Our model uses passive VNs to measure current density over the 
positions that real neurons would occupy in a biological model. In this 
section we analyze whether the use of active neurons maintains the 
same focus ranking as that obtained using passive neurons. To this end, 
we will utilize the neuronal model developed by Ashida and Nogueira 
(2018), whereby activation is governed by the potentials at the nodes 
of Ranvier induced by the currents injected into the electrodes. We 
have considered three different current patterns for the simulation: 
monopolar (MP), phased array (PA) and optimum focusing (OF), with 
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waveform as shown in Fig.  1. The amplitudes of the currents injected 
by the electrodes are 𝑰 = 𝐼0𝜶′, where 𝜶′ =

(

𝛼′𝑖
) is the current pattern 

(see Section 3.4.1), normalized so that max(𝛼′𝑖 ) = 1, and 𝐼0 is a scaling 
factor, which coincides with maximum current amplitude present in the 
electrode array.

Fig.  25, corresponding to stimulation centered on electrode 4 (top) 
and 11 (bottom) of Cochlea 1, shows the scaling factor 𝐼0 (in mA) in 
terms of the number of the neuron. As expected, 𝐼0 increases with the 
distance of the neurons from the target region. The narrower the U-
shaped profile of the curve, the more focused the proposed pattern 
of currents. The graphs show that according to the results obtained 
with active neurons, the least focusing stimulation is MP, followed 
by PA and the most focusing is OF. These graphs also show that the 
threshold values of 𝐼0 required to evoke an action potential in the 
neurons closest to the target region are, in increasing order, MP, PA 
and OF. This means that the power required to stimulate the target 
neurons follows the same order. These outcomes are in agreement with 
the results obtained using passive neurons. Although only the responses 
for a stimulus centered on an apical and central electrode of Cochlea 1
are shown in Fig.  25, similar results were obtained for the remaining 
electrodes.

The CPU times for the multiobjective optimization (Section 3.5) 
executed on an Intel i7-10510U CPU (1.80GHz) in a Linux Ubuntu 
laptop are summarized as follows: On average, each solution evaluation 
pair (𝐹𝑐 and 𝑃 ) requires 0.98ms. The entire multiobjective optimization 
process (NSGA-II, incorporating the injection of two corner solutions 
into the population) takes approximately 568.1 s (9 minutes and 30 s). In 
contrast, the computation time needed to calculate each current pattern 
with active neurons is five orders of magnitude (105) higher than for 
passive neurons (see Section 4.2). Consequently, reproducing a similar 
optimization process as described in Section 4.2 using active neurons 
would require an impractical amount of time (on the order of a year), 
which would make it unfeasible for practical use.

5.3. Crosstalk

The increase of the focusing results in the reduction of the in-
teraction between channels, a phenomenon known as crosstalk. The 
following example illustrates this issue. Fig.  26 shows the current 
density curves corresponding to stimulations centered on electrodes 6
and 10 at Cochlea 1 for MP and OF. The magenta and black lines at the 
bottom of the graph show the VNs whose current density is above the 
threshold current level 𝐽𝑡ℎ (green line). We see that in the situation 
represented in Fig.  26, crosstalk does occur when the stimulation is 
MP (bold magenta line), but it does not occur when the stimulation 
is OF. In that sense, the vector of current coefficients 𝜶 achieved from 
the optimization helps reduce crosstalk between channels by improving 
the focusing 𝐹𝑐 . In Fig.  27 it is observed that with the present values of 
𝐽𝑚𝑎𝑥 and 𝐽𝑡ℎ no crosstalk appears. However, if 𝐽𝑚𝑎𝑥 increases due to an 
increase in the amplitude of the input current, there will come a point 
where crosstalk will occur, but it would appear earlier with PA than 
with OF stimulation. In Figs.  26 and 27 we can also see that a current 
density profile with a steeper decrease as we move away from the target 
neurons indicates greater focusing than another profile with a smoother 
decrease. Regardless of the value of 𝐽𝑡ℎ, the number of excited neurons 
(current density greater than 𝐽𝑡ℎ) is always lower with OF stimulation 
than with MP (Fig.  26) or with PA (Fig.  27).

5.4. Pattern of optimal current profiles

In Section 4.4, while analyzing the best focusing designs, a pat-
tern of alternating current signs emerged as we move away from 
the central electrode. This pattern was particularly noticeable where 
significant values were provided by up to four adjacent electrodes on 
either side of the central one. The current coefficients exhibited an 
alternating sign pattern (+, -, +, -, +) with successively decreasing 
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Fig. 25. Current amplitude 𝐼0 to evoke an action potential as a function of the neuron 
number for MP, PA and OF patterns; Cochlea 1. Vertical lines indicate the boundaries 
of the neurons closest to the electrode in each figure.

Fig. 26. Crosstalk between electrodes 6 and 10 of Cochlea 1.

values. This pattern can be compared with another recent proposal 
where the use of opposing signs in the current coefficients has been 
claimed as beneficial for reducing the spread of current along the 
cochlea’s frequency axis (Croghan, Krishnamoorthi, & Smith, 2023). 
In this proposal, compensation currents are delivered with a polarity 
opposite to that of a primary current, and only two adjacent current 
coefficients are considered. Both of these coefficients have consecutive 
negative signs (+, -, -, 0, 0), without the characteristic alternating sign. 
The best proposed focusing solution, derived from the qualitative figure 
proposed in Croghan et al. (2023), is measured and translated into a 
17 
Fig. 27. Current densities of PA and OF for electrodes 6 and 10 of Cochlea 1.

Fig. 28. Comparison of distribution of current density 𝑗𝑛𝑚𝑎𝑥 including Croghan et al. 
(2023) estimation. Electrode 10 of Cochlea 1.

Table 9
Comparison of focusing 𝐹𝑐 and power con-
sumption 𝑃 including Croghan et al. (2023) 
estimation. Electrode 10 of Cochlea 1.
 Design 𝐹𝑐 𝑃  
 PA 290.26 1.00000 
 Croghan et al. (2023) 292.46 1.24705 
 Median Pattern 293.97 2.33882 
 OF 295.01 3.00293 

set of normalized current coefficients alpha of (+1, −0.33, −0.14, with 
the rest of values being 0) as we move away from the central active 
electrode. This solution is evaluated using our objective functions for 
focusing (𝐹𝑐) and power consumption (𝑃 ). It is then compared with 
the phased-array, the median pattern, and the optimum focusing in 
Electrode 10 of Cochlea 1, as an example. The values of their objective 
functions are shown in Table  9. The solution based on Croghan et al. 
(2023) improves the phased-array in terms of focusing, while it is 
surpassed by the median pattern and the optimum focusing solution. 
In terms of power consumption, inverse relations with respect to the 
focusing were observed. Fig.  28 shows the comparison in terms of 
current density distribution, where values of focusing 𝐹𝑐 are clearly 
related to the narrowness of the shape of current density (the higher 
the focusing, the narrower the shape of the curve).

Simulations performed in this work were matched to the real data 
of transimpedance matrices of patients for the Nucleus CI512 im-
plant, which were the ones available for this research at the Complejo 
Hospitalario Universitario Insular Materno Infantil de Gran Canaria. 
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Therefore the geometry of the FEM as described in Section 3.2 re-
produces the distances of this implant type accordingly. Authors are 
aware that this device is not currently capable of producing the kind of 
multipolar stimulation that the present study has investigated, which 
depends mainly on the electronic capabilities of the implant. In any 
case, the methodology and procedure described in this work is applica-
ble to any other implant and its associated geometry when clinical data 
were available. As future work, the application and analysis of multiob-
jective optimization of additional electrode designs (different electrode 
size, shape and/or spacing) and location (perimodiolar/lateral) are 
planned to be performed.

6. Conclusions

We have developed a computational model that combines FEM and 
evolutionary algorithms to simultaneously optimize focusing and power 
consumption in CI stimulation. For this goal, we have proposed two 
objective functions, one for focusing 𝐹𝑐 and one for power consumption 
𝑃 .

Using a multiobjective optimization procedure, where high quality 
corner solutions were injected in the initial population, we obtained 
current profiles capable of improving the focusing and power consump-
tion of both monopolar and phased-array stimulation, which are those 
used in practice. Specifically, Section 4.5 has handled the multiobjec-
tive optimization results, providing a set of equally optimum (from the 
mathematical point of view) designs, called non-dominated solutions. 
In our case, this set provides for each value of the power consumption 
the maximum associated possible focusing; or alternatively seen, for 
each value of the focusing, the minimum associated power consump-
tion. It is the task of the expert or decision maker based on their 
preferences (in our case, the CI designer) to choose their preferable 
optimum design. We propose as interesting designs those starting with: 
(a) the design with equal focusing than the phased-array design but 
with lower power consumption; continuing with: (b) all designs that 
improve the phased-array stimulation in both objective functions (𝐹𝑐
and 𝑃 ); (c) the design with equal power consumption than phased-array 
but with increased focusing; and finally, (d) designs with higher power 
consumption than phased-array but better focusing, up to the design 
with best focusing. The final decision making choice depends on the CI 
manufacturer’s policy supported by clinical evidence.

Additionally, an analysis of the best focusing solutions allowed to 
obtain design principles. The current pattern corresponding to max-
imum focusing shows alternating signs and decreasing values as we 
move away from the central active electrode. This allows the extraction 
of a pattern of currents built from the median values of the stimulating 
electrodes and common to all electrodes. It was even able to improve 
the focusing of the phased-array stimulation. The proposed median 
pattern requires a limited number of adjacent signals from the point 
of view of the central active electrode (+4/-4 in this study).

All the above could lead to common principles useful for the design 
of an improved multipolar stimulation of cochlear implants in practice.

As future work, in order to further improve the multi-objective 
optimization of this cochlear implant problem, it would be useful to 
propose customized operators. These could be based on the application 
of the innovization based methodology proposed in Ghosh, Deb, Good-
man, and Averill (2022), where specific knowledge of the problem can 
be exploited, or other methodologies (e.g. Maskooki, Deb, and Kallio
2022).
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Appendix. Total power supplied by the electrodes.

The expression (19) gives us the power dissipated in the electrolyte 
and the tissues associated with the resistive matrix 𝐙𝑐 . This power has 
served as a starting point to develop an objective function that does not 
depend on the particular waveform of the input current 𝑖𝑢𝑛𝑖𝑡. However, 
the total power supplied by the electrodes must also include the power 
dissipated in the double layer, associated with the matrix 𝐃 (𝜔). Thus, 
the total average power supplied by the electrodes is 

𝑃𝑎𝑣𝑔⧵𝑡𝑜𝑡 =
1
𝑇 ∫

𝑇

0
𝐢T (𝑡) 𝐯 (𝑡) 𝑑𝑡 (A.1)

where 𝐯 (𝑡) = −1 (𝐙 (𝜔) 𝐈 (𝜔)), being 𝐙 (𝜔) = 𝐃 (𝜔) + 𝐙𝑐 the tran-
simpedance matrix. To evaluate this power, we will use the generalized 
Plancherel identity. 

𝑃𝑎𝑣𝑔⧵𝑡𝑜𝑡 =
1

2𝜋𝑇 ∫

∞

−∞
𝐈T (𝜔)𝐙 (𝜔) 𝐈 (𝜔) 𝑑𝜔 =

𝜶T
(

1
2𝜋𝑇 ∫

∞

−∞
|𝐼𝑢𝑛𝑖𝑡 (𝜔) |

2𝐙 (𝜔) 𝑑𝜔
)

𝜶
(A.2)

In general, this integral cannot be calculated analytically, so it must 
be evaluated numerically. To calculate (A.2) we have to know the 
transimpedance matrix 𝐙 (𝜔). The matrix 𝐙𝑐 is calculated through the 
conductive FEM model. Also, we know that the terms of the diagonal 
matrix 𝐃 (𝜔) are of the form 𝑍𝑐𝑝𝑒 = 𝐾(j𝜔)−𝛽 . As discussed in Section 2, 
the specific values of 𝐾 and 𝛽 depend on the patient and the electrode 
considered. Taking into account the average values reported by Mes-
nildrey et al. (2020) for a total of 8 patients, we obtain an impedance 
𝑍𝑐𝑝𝑒 = 2.079×106(j𝜔)−0.64Ω. This is the impedance introduced in all the 
terms of the diagonal of 𝐃 𝜔  in the next example.
( )
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Table A.10
Relative powers with respect to the 
PA stimulation including the effect 
of the double layer 

(

𝑃𝑎𝑣𝑔

𝑃𝑎𝑣𝑔,PA

|

|

|𝑡𝑜𝑡

)

 and 
not including it 

(

𝑃𝑎𝑣𝑔

𝑃𝑎𝑣𝑔,PA

)

. Example 
for Cochlea 1 and electrode 10.
 Power Ratios MP OF  
 𝑃𝑎𝑣𝑔

𝑃𝑎𝑣𝑔,PA

|

|

|𝑡𝑜𝑡
0.159 3.275 

 𝑃𝑎𝑣𝑔

𝑃𝑎𝑣𝑔,PA
0.273 3.002 

As a test problem, let us consider the total powers delivered by 
the electrodes for monopolar stimulation, phased-array stimulation and 
optimum focusing taken the Cochlea 1 and the electrode 10. The input 
current 𝑖𝑢𝑛𝑖𝑡(𝑡) is the pulse represented in Fig.  1, with an amplitude of 
1A, phase width of 25 μs and interphase gap width of 8 μs.

The relative powers 𝑃𝑎𝑣𝑔⧵𝑡𝑜𝑡𝑃𝑎𝑣𝑔
 for MP, PA and OF are 𝑃𝑎𝑣𝑔⧵𝑡𝑜𝑡𝑃𝑎𝑣𝑔

|

|

|MP
= 1.477, 

𝑃𝑎𝑣𝑔⧵𝑡𝑜𝑡
𝑃𝑎𝑣𝑔

|

|

|PA
= 2.526 and 𝑃𝑎𝑣𝑔⧵𝑡𝑜𝑡

𝑃𝑎𝑣𝑔
|

|

|OF
= 2.757. Taking into account these 

ratios and the values of the objective function 𝑃 = 𝑃𝑎𝑣𝑔
𝑃𝑎𝑣𝑔,PA

 from Table 
6 (electrode 10), we can calculate the MP and OF powers respect to 
the PA stimulation including the double layer. These results are shown 
in the Table  A.10 compared with the values of the objective function 
𝑃𝑎𝑣𝑔

𝑃𝑎𝑣𝑔,PA
.

Table  A.10 indicates that the power ratios exhibit little variation, 
regardless of whether the double layer is included or not. This suggests 
that the outcomes derived from an objective function that incorporates 
the double layer would not deviate significantly from those obtained 
with the function 𝑃 (𝜶) proposed in Section 3.4.2.

Data availability

Data will be made available on request.
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