Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/137205
Campo DC Valoridioma
dc.contributor.authorMartín-Pérez, Alberto-
dc.contributor.authorMartínez Vega, Beatriz-
dc.contributor.authorVilla, Manuel-
dc.contributor.authorLeón Martín,Sonia Raquel-
dc.contributor.authorMartinez de Ternero, Alejandro-
dc.contributor.authorFabelo Gómez, Himar Antonio-
dc.contributor.authorOrtega Sarmiento,Samuel-
dc.contributor.authorQuevedo Gutiérrez, Eduardo Gregorio-
dc.contributor.authorMarrero Callicó, Gustavo Iván-
dc.contributor.authorJuarez, Eduardo-
dc.contributor.authorSanz, César-
dc.date.accessioned2025-04-24T12:05:03Z-
dc.date.available2025-04-24T12:05:03Z-
dc.date.issued2025-
dc.identifier.issn2666-9900-
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/137205-
dc.description.abstractCancer is one of the leading causes of death worldwide, and early and accurate detection is crucial to improve patient outcomes. Differentiating between healthy and diseased brain tissue during surgery is particularly challenging. Hyperspectral imaging, combined with machine and deep learning algorithms, has shown promise for detecting brain cancer in vivo. The present study is distinguished by an analysis and comparison of the performance of various algorithms, with the objective of evaluating their efficacy in unifying hyperspectral databases obtained from different cameras. These databases include data collected from various hospitals using different hyperspectral instruments, which vary in spectral ranges, spatial and spectral resolution, as well as illumination conditions. The primary aim is to assess the performance of models that respond to the limited availability of in vivo human brain hyperspectral data. The classification of healthy tissue, tumors and blood vessels is achieved through the utilisation of different algorithms in two databases: HELICoiD and SLIMBRAIN. This study evaluated conventional and deep learning methods (KNN, RF, SVM, 1D-DNN, 2D-CNN, Fast 3D-CNN, and a DRNN), and advanced classification frameworks (LIBRA and HELICoiD) using cross-validation on 16 and 26 patients from each database, respectively. Results: For individual datasets,LIBRA achieved the highest sensitivity for tumor classification, with values of 38 %, 72 %, and 80 % on the SLIMBRAIN, HELICoiD (20 bands), and HELICoiD (128 bands) datasets, respectively. The HELICoiD framework yielded the best F1 Scores for tumor tissue, with values of 11 %, 45 %, and 53 % for the same datasets. For the Unified dataset, LIBRA obtained the best results identifying the tumor, with a 40 % of sensitivity and a 30 % of F1 Score.-
dc.languageeng-
dc.relationTalent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificial-
dc.relationOasis Open Ai-Driven Stack Para Plataformas Hpec Mejoradas en Sistemas Integrados-
dc.relation.ispartofComputer Methods and Programs in Biomedicine Update-
dc.sourceComputer Methods and Programs in Biomedicine Update[EISSN 2666-9900],v. 7, (Enero 2025)-
dc.subject33 Ciencias tecnológicas-
dc.subject.otherBrain Tumor-
dc.subject.otherDeep Learning-
dc.subject.otherHyperspectral Maging-
dc.subject.otherMachine Learning-
dc.subject.otherNeurosurgery-
dc.titleUnifying heterogeneous hyperspectral databases for in vivo human brain cancer classification: Towards robust algorithm development-
dc.typeArticle-
dc.identifier.doi10.1016/j.cmpbup.2025.100183-
dc.identifier.scopus85217789825-
dc.contributor.orcid0000-0003-4715-6814-
dc.contributor.orcid0000-0001-7835-9660-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-4287-3200-
dc.contributor.orcid0000-0003-2668-2903-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-5415-3446-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57841764200-
dc.contributor.authorscopusid57218919933-
dc.contributor.authorscopusid57217310283-
dc.contributor.authorscopusid57212456639-
dc.contributor.authorscopusid58040159700-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid55845740700-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid36447485600-
dc.contributor.authorscopusid7006751614-
dc.identifier.eissn2666-9900-
dc.relation.volume7-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.utils.revision-
dc.date.coverdateEnero 2025-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr0,731-
dc.description.sjrqQ1-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0001-7835-9660-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-5415-3446-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameMartínez Vega, Beatriz-
crisitem.author.fullNameLeón Martín, Sonia Raquel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento, Samuel-
crisitem.author.fullNameQuevedo Gutiérrez, Eduardo Gregorio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Artículos
Adobe PDF (8,91 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.