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A B S T R A C T

Background and objective: Cancer is one of the leading causes of death worldwide, and early and accurate 
detection is crucial to improve patient outcomes. Differentiating between healthy and diseased brain tissue 
during surgery is particularly challenging. Hyperspectral imaging, combined with machine and deep learning 
algorithms, has shown promise for detecting brain cancer in vivo. The present study is distinguished by an 
analysis and comparison of the performance of various algorithms, with the objective of evaluating their efficacy 
in unifying hyperspectral databases obtained from different cameras. These databases include data collected 
from various hospitals using different hyperspectral instruments, which vary in spectral ranges, spatial and 
spectral resolution, as well as illumination conditions. The primary aim is to assess the performance of models 
that respond to the limited availability of in vivo human brain hyperspectral data. The classification of healthy 
tissue, tumors and blood vessels is achieved through the utilisation of different algorithms in two databases: 
HELICoiD and SLIMBRAIN.
Methods: This study evaluated conventional and deep learning methods (KNN, RF, SVM, 1D-DNN, 2D-CNN, Fast 
3D-CNN, and a DRNN), and advanced classification frameworks (LIBRA and HELICoiD) using cross-validation on 
16 and 26 patients from each database, respectively.
Results: For individual datasets,LIBRA achieved the highest sensitivity for tumor classification, with values of 38 
%, 72 %, and 80 % on the SLIMBRAIN, HELICoiD (20 bands), and HELICoiD (128 bands) datasets, respectively. 
The HELICoiD framework yielded the best F1 Scores for tumor tissue, with values of 11 %, 45 %, and 53 % for the 
same datasets. For the Unified dataset, LIBRA obtained the best results identifying the tumor, with a 40 % of 
sensitivity and a 30 % of F1 Score.

1. Introduction

In 2022, the World Health Organisation (WHO) globally registered 
around 321,731 new cases of brain and other Central Nervous System 
(CNS) tumors with 248,500 deaths [1]. CNS cancers have increased on a 
ten-year average annual percentage basis (2008–2017) by 0.7 % and 0.5 
% in ages 0–14 and 15–19 respectively [2]. Physicians usually perform 

an aggressive treatment including surgery, radiotherapy and chemo
therapy, which overall prognosis is unfavorable since enhancing sur
vival rates continues to be a major challenge [3]. Therefore, innovative 
approaches to improve the diagnosis of tumor tissue, to provide more 
information for surgical guidance and to improve the outcomes of the 
surgery are still needed.

A problem that arises during neurosurgical interventions is the so- 
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called brain shift phenomena, which describes the deformation of the 
brain tissue structure as the brain moves after craniotomy [4]. Tools like 
neuronavigators, Intraoperative Magnetic Resonance (IMR), Intra
operative Ultrasound (IOUS), or drugs like 5-aminolevulinic acid 
(5-ALA) are commonly used to address the tumor brain location. How
ever, each of these approaches present inherent limitations [5–8]. To 
provide a quicker alternative to address the brain shift problem, IOUS is 
frequently employed, however, it provides artifacts and low resolution 
images [9,10]. Another effective alternative is 5-ALA, but it is invasive 
and only suitable for high grade tumors in human adults [11,12]. 
Therefore, faster and non-invasive techniques are needed to address the 
tumor brain areas during surgical workflows.

Hyperspectral (HS) Imaging (HSI) is a technology which combines 
conventional imaging and spectroscopy. This combination provides 
simultaneous spectral and spatial information of an object [13]. HSI 
offers a wealth of information covering a large number of contiguous 
spectral bands, from the ultraviolet to the infrared spectral ranges. Thus, 
the reflectance measured in a pixel acts as a fingerprint, the so-called 
spectral signature, which allows characterizing the chemical composi
tion of the material in that pixel [14]. HSI is a technique well suited for 
medical applications for its non-invasive, non-ionising and label-free 
nature. This technology has been evaluated in diverse applications, 
such as histopathological tissue analysis [15–17], head and neck cancer 
[18,19], colon and esophagogastric cancer [20–22], and brain cancer 
[23–29], among others.

In recent years, advances in HS sensors have enabled data acquisition 
through different techniques, including Scanning-Based (SB) and Wide- 
Field (WF) methods [30]. SB techniques involve acquiring the spectrum 
for each pixel (pushbroom cameras). Although these techniques provide 
extremely high spectral resolution, the acquisition time is high, which 
can take up to 1 min [31]. Besides, since the spatial dimensions are 
obtained by moving the Field-OfView (FOV) of the camera, spatial ali
asing can occur as object movements can take place during the scanning. 
In contrast, WF methods capture the entire spatial scene in a single 
exposure with 2D sensors, which can be achieved by stepping through 
wavelengths filters to complete the HS cube (wavelength scan) or by 
simultaneously acquiring the spatial and spectral information (snap
shot) [32]. These techniques do enable real-time solutions by providing 
a live sequence of HS images. However, the spatial and spectral reso
lution is much lower.Since it is important to have both good resolution 
and low acquisition time during brain tumor interventions, there is no 
specific HS sensor to use. Sancho et al. [33] used HS snapshot cameras 
and Fabelo et al. employed pushbroom cameras [34].

HSI, combined with Machine Learning (ML) algorithms has been 
used to differentiate pathological from healthy tissue in in vivo human 
brain [28], offering another intraoperative tool to address the tumor 
brain area problem. For example, several studies have differentiated 
Gliobastoma (GB) from healthy tissue using HSI and ML under different 
scenarios, either at a macroscopic scale [31,33] or by coupling HS 
cameras to intraoperative microscopes [27,35]. Furthermore, other re
searchers have used HS data to train Deep Learning (DL) models and 
classify tumor [24,29,36,37]. These studies acquire HS images from the 
surface of the brain, using reflected light to reveal diagnostic informa
tion related to tissue pathology.

The aim of this work is to compare and analyse the performance of 
different classification algorithms performed on two independent and 
unified databases: traditional ML, DL approaches and complex frame
works. The rest of the study is structured as follow: Section 2 describes 
the acquisition systems, the proposed general processing framework, 
and the classification algorithms to be evaluated. Section 3 presents the 
obtained results and the discussions. Finally, in Section 4 the conclusions 
and the next steps to be followed in the future are explained.

2. Materials and methods

A comprehensive overview of two independent brain HS databases, 

namely HELICoiD and SLIMBRAIN is presented in Section 2.1, providing 
a summary of the number of labelled pixels for each database in Section 
2.2.4. The data management performed to pre-process the HS cubes of 
both databases, as well as the data downsampling method used are 
detailed in Section 2.2. In Section 2.2.2 the data partitioning and opti
mization of ML are explained. Then, in Section 2.3 the various ML 
classification algorithms are described. Finally, the evaluation metrics 
used to assess the performance of the classification models are presented 
in Section 2.4.

2.1. Data acquisition

2.1.1. HELICoiD database
The system employed for the acquisition of the HELICoiD database 

was developed during a European research project under the same name 
[31]. In the course of this project, 36 in vivo brain HS images from 22 
different patients were obtained. The description of the acquisition 
system used is described in further detail in [38], but the data used for 
this work was taken from a pushbroom camera gathering information 
withint the visual near infrared (VNIR), specifically within the 400-1000 
nm. The study protocol and consent procedures were approved by the 
Comité Ético de Investigación Clínica-Comité de Ética en la Investigación 
(CEIC/CEI) of the University Hospital of Gran Canaria Doctor Negrin 
(CEIC code: 130069) and the National Research Ethics Service (NRES) 
Committee South Central Oxford C for the University Hospital of South
ampton. Written informed consent was obtained from all the subjects.

Ground Truth (GT) annotations were performed by combining 
pathological assessment with neurosurgical criteria and the use of the 
Spectral Angle Mapper (SAM) algorithm. The labelled pixels were ob
tained using a customised labelling tool developed to this end [38]. 
Three different classes were defined: Healthy Tissue (HT), Tumor Tissue 
(TT) and Blood Vessels (BV).

The dataset employed in this study was collected during two acqui
sition data campaigns carried out at the University Hospital of Gran 
Canaria Doctor Negrin (Spain) [38]. Composed of 26 HS images ob
tained from 16 adult patients, this dataset includes six HS images from 
four different patients diagnosed with GB. The remaining patients were 
affected by other tumor types or underwent surgery due to other dis
eases. From these latter patients, only samples of HT and BV were 
registered and employed in this study. Fig. 1 shows three HS images 
captured from subjects affected by GB within this dataset.

2.1.2. SLIMBRAIN database
The SLIMBRAIN database is a multimodal image database created to 

identify in vivo human brain tumors [39]. The main types of images 
available include HS, RGB and depth information for more than 193 
patients. The guidelines of the Declaration of Helsinki were followed and 
the acquisition of HS images was approved by the Research Ethics 
Committee of Hospital Universitario 12 de Octubre, Madrid, Spain 
(protocol code 19/158, 28 May 2019).

Although the acquisition system used to acquire the database is 
described in [39], the primary camera utilized was a near-infrared (NIR) 
HS snapshot camera, capable of gathering 25 spectral bands within the 
near-infrared (NIR) range, specifically, within the 660–952 nm. 
Furthermore, the procedure to label the HS data is the same as followed 
for the HELICoiD database, described in Section 2.1.1. For this work, 26 
HS images from 26 adult patients were used, all diagnosed by GB. 
However, only 13 images have pathological pixels labelled since they 
have the tumor on the surface. Hence, the other 13 patients are used to 
only obtain HT and BV samples. Fig. 1 shows an example of 3 HS images 
of this dataset with their corresponding GT maps overlaid.

2.2. Data management

Fig. 2 illustrates the general processing chain followed in this study. 
The pre-processing framework differs based on the HS database 
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employed and will be detailed in the following section.

2.2.1. Pre-processing chain
This section explains in detail the pre-processing block used in each 

database (Fig. 2 (1)), which is divided into three general steps: cali
bration, filtering, and removal of extreme bands. First, after HS data was 
captured, the raw radiance (Iraw) from the HS cameras was calibrated 
using Eq. 1 to obtain the reflectance R. Obtaining R requires white (Iwhite) 
and dark (Idark) reference images taken under the same conditions as Iraw. 
The Iwhite of both databases was acquired with a Spectralon tile (Spher
eOptics GmbH, Herrsching, Germany) and the Idark was acquired by 
keeping the camera shutter closed. Both Iwhite and Idark are required in the 
calibration process to minimize the influence of the light source on the 
sample and to remove the electrical noise of the HS sensor, respectively. 

R =
Iraw − Idark

Iwhite − Idark
(1) 

Then, after calibrating the images, the data from the snapshot cam
era (SLIMBRAIN database) require a spectral correction to be applied 
using Eq. 2. This process must be done to deal with crosstalk in the 
sensor due to fluctuations in the incident light angles. To mitigate this 
issue, the manufacturer provides a spectral correction matrix (SCM) in 
Eq. 2 for adjusting the response of the snapshot sensor. Eq. 2 ends up 
producing the spectrally corrected reflectance of the snapshot HS im
ages, RSC. 

Rsc = Rsnapshot × SCM (2) 

Then, R and RSC are spectrally filtered to reduce noise. A Gaussian 
smoothing filter and a HySime filter, introduced by Bioucas-Dias et al. 
[39,40], were used for the HELICoiD and the SLIMBRAIN HS images, 
respectively. Specifically, the first stage of the HySime algorithm was 
applied, in which the noise is estimated. In this process, each band of the 
HS image is assumed to be a linear combination of the rest of the bands, 
and thus the noise is the error in the linear combination. The estimated 
noise is then subtracted from the original HS image.

The extreme bands from the HELICoiD data are then removed, as they 
are noisy due to the low performance of the sensor in that region. Thus, 
the spectral range available in that database is 440–902 nm. Hence, to 
evaluate classification algorithms under similar conditions with the two 
databases, the latest bands between 900 and 950 nm were removed from 
the SLIMBRAIN database data. Then, for the HELICoiD database only, 
after the removal of the extreme bands, leaving a total of 645 spectral 
bands, the spectral wavelengths are decimated from 645 to 128 bands. 
In [41], it is shown how the decimation of bands is performed, where the 
average classification performance does not decrease until 128 bands 
are reached. Furthermore, an interpolation is also performed to have 
exactly the same wavelengths as in the SLIMBRAIN database. Finally, for 
the three datasets (H20, H128 and SLIMBRAIN), each spectral signature 
is independently adjusted to the range between 0 and 1 by applying a 
min-max normalization.

2.2.2. Data partition
The datasets are divided into training, validation, and test sets using 

K-fold cross-validation at patient level to minimize bias and enhance 
model robustness [31,34,36,42] (Fig. 2. (2) to (6)). The H20 and H128 
datasets, each with 16 patients, include four TT class patients. These 
datasets are partitioned into 4-folds, ensuring patients with all classes 
(HS images) appear in all sets, while patients with only HT and BV are 
included only in training sets (see the supplementary material docu
ment, Section 1). Patient identifiers use the format: patient number and 
capture number (e.g., 1C2). Detailed partitioning is in Table S1 of the 
supplementary material.

The SLIMBRAIN dataset includes 26 patients, 13 with TT class. To 
avoid bias and reduce computation time, an 8-folds partition is 
employed. Remaining patients are used only in training folds. The 
SLIMBRAIN dataset training captures use a similar nomenclature, with 
exposure time indicated (e.g., 1C2). Detailed partitioning is in Table S2 
of the supplementary material. All tumor-labeled HS images are 
included in at least one set.

The Unified dataset combines the H20 and SLIMBRAIN datasets (42 

Fig. 1. Synthetic RGB images with overlapped ground truths of three patients from the HELICoiD (top row) and SLIMBRAIN (bottom row) databases affected by GB. 
Green, red, and blue pixel colors indicate healthy tissue, tumor tissue, and blood vessels, respectively.

Fig. 2. Generic processing chain block diagram for classification using ML and 
DL models in each databases. The yellow boxes [1–2] indicate the 
pre-processing stage and the partitioning method closest to the clinical case. 
Blue boxes [3–6] represent the datasets obtained for train, validation and 
testing. Green boxes [7–9] illustrate the ML and DL algorithms used for the 
classification.
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patients, 17 with TT class) and requires at least 10-folds for partitioning. 
Detailed partitioning is in Table S3 of the supplementary material.

2.2.3. Training data downsampling
Supervised classifiers rely on data quality and quantity for effective 

training, but unbalanced data or redundancy can potentially slow down 
training and degrade classification performance. In order to mitigate 
these limitations, the downsampling methodology proposed by Martinez 
et al. [41] is employed (Fig. 2 (4)). This methodology is based on an 
unsupervised K-Means clustering applied jointly with the SAM metric. In 
particular, the pixels of the training datasets are divided into three 
groups corresponding to the three classes (HT, TT and BV). K-Means 
clustering is applied independently to each group of labelled pixels to 
obtain 100 different clusters per class (300 clusters in total). This cluster 
number is used in order to match the number of clusters presented in 
[41] that serves as a basis for our study.

The training data reduction is executed twice: once for each inde
pendent datasets and once for the Unified dataset. Employing SAM, 
centroids identify the most representative pixels of each class. For the 
independent databases, the 34 most similar pixels per centroid are 
selected, totaling 3,400 pixels per class, based on the minimum TT class 
pixels (3,405). However, for the Unified dataset, the 115 most similar 
pixels per centroid are selected, totaling 11,500 pixels per class, based 
on the minimum TT class pixels (11,552). Train, validation, and test 
partitions are detailed in Section 2.2.2. Classification models are also 
trained with all pixels for performance comparison.

2.2.4. Summary datasets
This study analyzes four datasets from the two databases: (i) H128 

with 128 bands (440–902 nm) from the HELICoiD database, (ii) H20 
with 20 bands (660–900 nm) from the HELICoiD database for compar
ison with SLIMBRAIN, (iii) SLIMBRAIN with 20 bands identical to H20, 
and (iv) Unified dataset combining H20 and SLIMBRAIN. Fig. 3 shows the 
mean spectral signatures for the TT class after the preprocessing 
described in Sub-sub Section 2.2.1 for the first three datasets.

The spectral signatures of the SLIMBRAIN dataset exhibit high 
standard deviation within pixels of the same class. Hahn et al. [43] 
found that the Fabry-Pérot sensor’s spectral correction matrix is insuf
ficient for accurate spectrum reconstruction, leading to significant 
measurement errors. They suggested creating an individual matrix 
postcharacterization, which requires a dedicated optical system not 
available during the creation of the SLIMBRAIN database. However, the 
mean spectral signatures of the H128 and H20 datasets are smoother 
than those of the SLIMBRAIN dataset. Reflectance differences between 
H128 and H20 result from the normalization step performed after 

selecting the number of bands and spectral range. Further information 
about the amount of pixels available from each database as well as the 
spectral signatures for the HT and BV tissues are presented in Table S4 
and Fig. S2.

2.3. Model optimization and classification algorithms

The next step in the generic processing chain is the ML and DL 
models evaluation (Fig. 2 (7)–(9)). This section explains the classifica
tion models used in the experiments. First, Fig. 4 shows the process that 
the supervised classifiers perform in order to obtain the optimized 
hyperparameters.

Models were evaluated using a validation set during hyperparameter 
optimization, regardless of dataset and downsampling (Section 2.2.3). 
Although grid and random search are popular for hyperparameter tun
ing, they focus more on exploitation than exploration. Hyperparameter 
optimization for ML models is computationally intensive, but Bayesian 
Optimization (BO) improves effectiveness [44]. Using a surrogate 
function reduces computational costs [45]. Therefore, Sequential 
Model-Based Optimization (SMBO), a BO formalization, was employed 
to optimize hyperparameters. SMBO maximized the weighted average 
area under the ROC curve (ROC–AUC) for all class pairwise combina
tions. Optimized models were evaluated on the validation and test sets 
using metrics from Section 2.4. The evaluated classifiers included 
K-Nearest Neighbors (KNN), Random Forest (RF), Support Vector Ma
chines (SVMs), 1D deep neural network (1D-DNN), 2D convolutional 

Fig. 3. Mean and standard deviation of the spectral signatures from tumor tissue including all patients for each of the 3 datasets employed in this study. The graph 
displays the mean with the central curves and the standard deviation with the shaded region.

Fig. 4. Block diagram of the process used to train, optimize, and evaluate ML 
classification models, with the aim of finetuning and improving 
hyperparameters.
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neural network (2D-CNN), 3D convolutional neural network (3D-CNN), 
and a recurrent neural network (RNN), commonly used in medical HS 
imaging [31,34,36,42,48,50].

2.3.1. Supervised learning algorithms
This section describes the three supervised ML algorithms used in 

this work. First, SVM discriminates samples by predicting the optimal 
hyperplane in an n-dimensional space. Common kernels used in the 
stateof-the-art include linear and Radial Basis Function (RBF) [24,25,
34]. Second, RF uses the bootstrapping resampling technique to 
construct a decision tree ensemble, with final predictions based on the 
majority label [46]. RF has been used to classify in vivo human brain 
images in recent studies [24,25]. Finally, KNN classifies samples by 
proximity to neighboring data points [47] using metrics like Euclidean 
and Cosine distances, previously used for the classification of brain tu
mors using HS data [31]. The hyperparameters of these algorithms are 
optimized as detailed in Table S5 of the supplementary material.

2.3.2. Deep learning algorithms
In this study, four DL models are employed. First, the 1D-DNN and 

2D-CNN models described in [36] are used, which operate on spectral 
information alone or utilises both spectral and spatial information, 
respectively. Furthermore, the Fast 3D-CNN model outlined in [48] is 
used as well, which allows for the learning of combined features from 
the spatial and spectral dimensions [49]. Finally, a recent deep RNN 
(DRNN) model is employed, as outlined by Cebrian et al. [50]. These 
RNN models are founded on the interrelationships between the spectral 
extent of the HSI, as articulated in [51]. For the 2D-CNN, Fast 3D-CNN, 
and DRNN models, data are structured as in Fabelo et al. [36], with 11 ×
11 pixel patches centred on each labelled ground truth pixel, allowing 
overlap, and with a batch size of 12. It is noteworthy that all models 
employ the Adam optimiser, with 40 epochs for the 1D-DNN, 50 for the 
2D-CNN, Fast 3D-CNN, and DRNN as done in previous works [36]. The 
learning rate (lr) was optimised in accordance with Table S5 in the 
supplementary material. Python code with the implementation for the 
DL models used is also available in the supplementary material.

2.3.3. Classification frameworks
This study analyzes two classification frameworks, HELICoiD and 

LIBRA, designed to enhance ML and DL classification results by 
combining various algorithms. The HELICoiD framework combines 
spatial and spectral features of HS images using supervised and unsu
pervised ML methods. It involves four main steps: dimensional reduc
tion, spatial-spectral supervised classification, unsupervised clustering 
segmentation, and majority voting. PCA-guided KNN filtering is used for 
spatio-spectral homogenization, and the filtered classification map is 
combined with an unsupervised segmentation map through majority 
voting to produce the final thematic map. The HELICoiD framework 
utilizes a supervised linear SVM with optimized hyperparameters for 
each training group, as described in further detail in [31].

On the other hand, LIBRA is a hierarchical classification framework 
aiding neurosurgeons in brain tumor surgeries, as described by Villa 
et al. [52]. It employs multiple SVMs and ensemble methodologies to 
improve classification. LIBRA filters relevant samples into groups and 
uses genetic algorithms to implement Breiman’s bagging process [53]. 
This filtering is accomplished by generating groups of samples (N = 20) 
belonging to each class. Since our problem has three classes, a total of 60 
groups are generated. Then, genotypes are iteratively selected, using M 
= 10 generations with G = 10 genotypes each, to find the one that 
maximizes the F1 Score of the tumor class, thus, facilitating efficient 
classification with reduced complexity.

2.4. Performance metrics

The evaluation of the algorithms includes both qualitative and 
quantitative analysis. Four classification metrics, accuracy (ACC), 

sensitivity (SEN), F1 Score, and Matthews Correlation Coefficient (MCC) 
are used to compare algorithms trained on different datasets. These 
metrics require true positives (TP), false positives (FP), true negatives 
(TN), and false negatives (FN) from the confusion matrix, as shown in 
Eqs. 3–6. Additionally, specificity (SPE), and ROC–AUC metrics are 
provided in the supplementary material (Equations S1 and S4). 

ACC =
TP + TN

TP + TN + FP + FN
(3) 

SEN or (TPR) =
TP

TP + FN
(4) 

F1 Score =
2 × TP

2 × TP + FP + FN
(5) 

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

√ (6) 

Qualitative analyses include classification maps for ML and DL al
gorithms, probability maps for LIBRA, and density maps for HELICoiD 
framework. Classification maps use colors to indicate the class with the 
highest probability per pixel, while probability maps display a mix of 
colors based on class probabilities, and density maps show color distri
bution based on pixel count within K-means clusters. All maps use green, 
red, and blue to represent HT, TT, and BV classes, respectively. Quan
titative metrics for complex frameworks are evaluated before any 
smoothing or filtering procedures are applied to the maps.

3. Results

Bar plots with 95 % confidence intervals illustrate the mean results 
from K-fold cross-validation (Section 2.2.2). The validation metrics ACC, 
SEN, and F1 Score for the TT class are used to validate the main focus of 
the study. Results for the additional metrics and classes are in the sup
plementary material (Figs. S3-S7), while Tables S6-S10 show the opti
mized hyperparameters using the validation set across datasets. Sections 
3.2 and 3.3 present quantitative and qualitative results for the best 
models. Further test metrics (Fig. S8 and Fig. S9) and thematic maps 
(Fig. S10 to Fig. S20) are also in the supplementary material. Finally, 
Section 3.4 shows results from unifying the SLIMBRAIN and H20 
datasets.

3.1. Quantitative validation results

The validation results obtained for the TT class are illustrated in 
Fig. 5. It shows four bar plots representing the mean results for the ACC, 
SEN, F1 Score, and MCC metrics, respectively. Three colors are used to 
represent each dataset, orange, blue, and green for the SLIMBRAIN, H20, 
and H128 datasets, respectively. On one hand, light colors with diagonal 
lines starting from the bottom left to the top right indicate that all pixels 
of the training set have been employed. On the other hand, darker colors 
with diagonal lines starting from the top left to the bottom right indicate 
that the training samples have been downsampled as specified in Section 
2.2.3. Additionally, the bars are grouped according to the classifier used, 
detailed in the X-axis.

Downsampling generally results in an increase in the mean value of 
all the metrics in most cases. Exceptions along with SEN values are 
minimal, and decreases in the mean value are less than 7 %. This implies 
that downsampling improves the results in validation and has a negli
gible impact on the mean outcomes.

Nevertheless, downsampling means that the dispersion of the results 
of all metrics across partitions increases, regardless of the dataset under 
inspection. This may be because reducing the number of training pixels 
causes algorithms not having enough samples to generalize well to new 
patients, as training pixels get reduced to 3,400 pixels per class. Even so, 
it is observed that the mean value of any metric increases, suggesting 
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that downsampling eliminates noisy samples that have a direct influence 
on a worse classification

After evaluating the performance of several classifiers in each of the 
datasets, it is concluded that first, although the dispersion increases after 
downsampling, there is a noticeable improvement in classifier perfor
mance in all datasets. Second, in the context of the traditional algo
rithms, the SVM_linear exhibits the best performance considering the 
three datasets and the results obtained. The best SEN value is reached in 
all three datasets, being ≈ 20 % in SLIMBRAIN, ≈ 60 % in H20, and ≈ 50 
% in H128. Regarding the F1 Score, it is observed that with the H128 
dataset the best value reaches ≈ 52 %. With the SLIMBRAIN and H20 
datasets, the classifiers that obtain the best results are KNN_Euclidean 
and SVM_RBF, respectively. Moreover, the best results obtained for MCC 
are also obtained with SVM_linear for the SLIMBRAIN and H128 datasets, 
with ≈ 10 % and ≈ 50 % mean values, respectively. However, for the 
H20 dataset the SMV_RBF classifier obtained the highest mean value of ≈
35 % after performing downsampling, slightly lower than than obtained 
with SVM_linear when not performing downsampling. It is important to 
note that the disparity between the classifiers is small, being 7 % for 
SLIMBRAIN and 6 % for H20 dataset. Third, with respect to the DL 
classifiers, the best performing classifier is 1D_DNN, since it has obtained 
better mean results across the three datasets regardless of the metric 
under evaluation. It is important to note that the elevated values ob
tained for SEN with the 2D_CNN algorithm are attributable to the fact 
that it predicted the majority of the pixels as tumor, as in F1 Score the 
value reach around a 40 %, which takes into account the FP. A notable 
observation regarding the MCC metric for all networks except 1D_DNN is 
the proximity of its mean values to 0. Subsequent investigation into the 
underlying causes of this phenomenon has revealed that these networks, 
given their incorporation of spatial information during training, appear 
to encounter difficulties in attaining effective learning and generaliza
tion capabilities, hence influencing the results obtained. This low per
formance could be related not only to the inherent limitations of the 
network architectures, but also to the limited number of patients 
available during the training process. Finally, the HELICoiD and LIBRA 
frameworks are also evaluated in the test evaluation in Section 3.2.

3.2. Quantitative test results

Based on the validation results, the performance of the SVM_linear, 
the 1D_DNN algorithm and both classification frameworks generated in 
the downsampling validation process will be examined using the test 
datasets. For this case, the ACC, SEN, F1 Score, and MCC metrics are 
provided for all the classes in Fig. 6. These bar plots indicate with colors 
the different datasets employed, where each group of bars indicate the 
tissue under analysis. Furthermore, the different patterns in the bars 
indicate each classifier.

Most algorithms have obtained better results with the H20 and H128 
datasets than with the SLIMBRAIN dataset. This is likely due to the noise 
introduced by the snapshot sensor. Both LIBRA and HELICoiD frame
works achieve better average results in the TT class compared to 
SVM_linear or 1D_DNN. This suggests that when dealing with a dataset 
like SLIMBRAIN, which might have higher noise on its measurements, it 
is essential to employ more complex algorithms that can better leverage 
the data. Interestingly, with the H20 and H128 datasets, complex algo
rithms do not show substantial improvements compared to other 
classifiers.

For the HT and BV classes with the H128 dataset, the results of the 
classifiers are generally high. With this dataset, minimum mean values 
of 80 % are reached for all classes and for all classifiers (with the 
exception of LIBRA). As for the H20 dataset, these tend to move between 
average values of 30–50 %, with the exception of LIBRA in the BV class. 
With respect to the SLIMBRAIN dataset, it has a little more variation 
depending on the classifier used. With the 1D_DNN classifier, between 
12 % and 75 % is obtained, with the SEN and F1 Score metrics obtaining 
the best values. Regarding the TT class, the classifiers show a higher 
variability between each other for all datasets, from 10 % to 80 % on the 
mean values.

Further analysis of the classification frameworks reveals that the 
HELICoiD framework generally has higher average values than the rest 
of the classifiers for both the H20 and H128 datasets in the HT class. 
Results with the SLIMBRAIN dataset reveals that LIBRA is the best 
classifier for identifying healthy pixels. For ACC and SEN metrics, LIBRA 

Fig. 5. Bar plots illustrating the mean and confidence interval of 95 % with the results obtained on the validation sets after training with and without downsampling 
for the SLIMBRAIN, H20, and H128 datasets. Plots illustrate the ACC, SEN, F1 Score, and MCC, respectively, for the tumor tissue.
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is the best for all three datasets in TT. For F1 Score, the HELICoiD 
framework is slightly better than any other classifier for any dataset.

3.3. Qualitative test results

This section presents the thematic maps corresponding to the models 
evaluated in Section 3.2 obtained from the analysis of the three datasets. 
As an example, qualitative results from two patients for each dataset are 
presented in Fig. 7, including their GT overlaid on the RGB image and 
the thematic maps of the classifiers. The rest of the thematic maps can be 
found in the supplementary material (from Fig. S10 to Fig. S19). The 
thematic maps are composed by classification maps (ML and DL algo
rithms), probability maps (LIBRA framework) and density maps (HELI
CoiD framework). Black rectangles in the images illustrate the areas near 
the tumor pixels labeled by the neurosurgeons. Thematic maps show HT, 
TT, and BV tissues in green, red, and blue colors, respectively.

SLIMBRAIN dataset show that none of the algorithms were able to 
delineate the TT from the HT. This fact is observed when looking inside 
the black rectangles of either capture F1-67C1 or F5-71C2, where most 
algorithms classified TT as HT. Furthermore, SVM_linear shows more 
false positives from the TT class on its classification map outside the 
rectangle at the bottom right compared to 1D_DNN, LIBRA and HELICoiD 
frameworks. Observing capture F5-71C2, SVM_linear and 1D_DNN both 
encounter problems when classifying BV located beyond the lower-right 
corner of the black rectangle, classifying most pixels as BV or TT instead 
of HT tissue. However, it can be seen that LIBRA and HELICoiD frame
works are able to better delineate these BV pixels, introducing less BV 
false positives.

Regarding the H20 dataset, patients F1-12C1 and F3-20C1 are shown 
respectively. It can be seen at first glance that, with respect to F1-12C1, 
SVM_linear and 1D_DNN are able to identify the delimitation of the 
tumor region within the black rectangle, while LIBRA visualize a small 
area and HELICoiD framework clearly identifies the HT class and some 
areas of the TT class. SVM_linear and 1D_DNN identify some small areas 
of the TT class of the F3-20C1, having a better delimitation 1D_DNN. 
However, LIBRA and HELICoiD frameworks have not been able to 
identify all the tumor region.

As for the H128 dataset, it is observed that SVM_linear for F1-12C1 

identifies the TT class that is within the black rectangle, however, it 
also shows a large number of false positives. For F3-20C1, it is not able to 
identify the tumor region. Observing the 1D_DNN classifier, the tumor 
region is identified for F1-12C1 but for F3-20C1 only HT class is iden
tified. However, a minimum false positives are provided. LIBRA is not 
able to visualize the TT class while the HELICoiD framework shows the 
TT clearly and with minimum amount of false positives in the tumor 
region of F1-12C1. None of the algorithms were able to identify TT for 
the F3-20C1 capture using H128 dataset.

Generally, SVM_linear and 1D_DNN classifiers have difficulties iden
tifying blood vessels. This behaviour can be qualitatively observed with 
probability maps using SLIMBRAIN presented from Fig. 7 (b)–(j), where 
the complex frameworks can better delineate the BV presented in Fig. 7
(a) and (f). Furthermore, the HELICoiD framework not only segments 
veins in SLIMBRAIN more effectively with the classification metrics, but 
also performs as the best algorithm in the H20 dataset. It is worth noting 
that the SLIMBRAIN or the H20 datasets lack the highest absorption 
peaks of the oxygenated hemoglobin (HbO2) at λ = 542 nm and λ = 572 
nm, which might be useful to identify the different classes with more 
precision. Comparing the classification maps obtained with the H20 
dataset (see Fig. 7 (b)–(j)) against those obtained with the H128 dataset 
(see Fig. 7 (b)–(j)), SVM_linear, 1D_DNN, and the HELICoiD framework 
are able to better delineate the BV when H128 is used.

3.4. Test results using the unified dataset

The bar plots presented in Fig. 8 illustrate the mean and confidence 
interval of 95 % for the performance metrics obtained on test sets after 
training with and without downsampling on the Unified dataset. The 
plots display the ACC, SEN, F1 Score, and MCC for HT, TT, and BV tissue 
across different algorithms: SVM_linear, 1D_DNN, LIBRA, and the HELI
CoiD framework, both with and without downsampling.

A notable observation is that downsampling appears to have a 
varying impact on different algorithms and tissues. For HT, all algo
rithms exhibit high ACC, ranging from approximately 75 % to 85 %, 
with downsampling having minimal effect on performance. SEN, F1 
Score also remain consistently high across algorithms for HT, with SEN 
values around 80 % and F1 Scores between 70 % and 80 %, indicating 

Fig. 6. Bar plots illustrating the mean and confidence interval of 95 % with the results obtained on the test sets after training with downsampling for the SLIMBRAIN, 
H20, and H128 datasets. Plots illustrate the ACC, SEN, F1 Score, and MCC, respectively, for the healthy tissue, the tumor tissue, and for the blood vessel tissue.
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robust detection capability without substantial loss due to down
sampling. However, MCC values remain low, below to 30 %. Conversely, 
for TT, downsampling significantly affects the performance metrics. 
Algorithms without downsampling generally show poor SEN, with 
values below 10 %, F1 Scores around 10 %, and MCC close or below to 
0 %, reflecting challenges in detecting tumors without balancing the 
dataset. However, algorithms like LIBRA demonstrates improved SEN 
(around 45 %) and F1 Scores (approximately 35 %) with downsampling, 
suggesting its efficacy in handling class imbalance for tumor detection. 

Generally, BV tissue exhibit reduced performance when downsampling 
is done, regardless of the algorithm and metric observed.

Importantly, no thematic maps are presented since they mostly 
identify HT and BV, illustrating difficulties classifying TT. However, 
some examples are presented in Fig. S20 available in the supplementary 
material.

Fig. 7. Thematic maps obtained with the classifiers evaluated on the test sets for each dataset. Black rectangles indicate the location of the tumor.
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4. Conclusions

This paper presents a study with the performance of classification 
algorithms for brain tumor detection in two independent in vivo brain HS 
databases, namely HELICoiD and SLIMBRAIN. For fair comparisons be
tween both datasets, classification models were trained and evaluated 
with 20 spectral bands within the 660–900 nm range, hence matching 
the spectral information captured with the HS pushbroom camera used 
to collect HELICoiD with the data measured with the HS snapshot 
camera utilized for SLIMBRAIN. We also used all 128 bands with spectral 
information between 450 and 900 nm as reference, since they were 
initially included in the HELICoiD HS cubes. This leads to three datasets 
being employed, SLIMBRAIN, H20 with 20 bands, and H128 with 128 
bands. Quantitative results in the validation sets indicate that, in gen
eral, classification models demonstrate improved average performance 
on the TT class, but with an increased result dispersion, when down
sampling the training set to balance the classes in the datasets and 
accelerate the training process.

However, the performance is limited due to several factors. Primar
ily, the limited number of samples results in a restriction of the vari
ability of the data. While the balancing of the data indeed improves the 
results, it also implies a reduction in the data and, consequently, in the 
variability. Another limitation is the spectral range, with H128 
providing superior results in comparison to H20, emphasising the ne
cessity for the identification of relevant spectral ranges in this particular 
application.

Moreover, an analysis of the qualitative results with the thematic 
maps yielded insights into the impact of these factors. Results for the test 
sets may suggest that the models encounter challenges in extrapolating 
to unseen patients. Overall, results show large inter-patient variability, 
specially true when evaluating models on the SLIMBRAIN dataset. 
Nonetheless, complex classification frameworks like LIBRA appear to 
more effectively harness data from SLIMBRAIN compared to conven
tional ML algorithms or DL approaches. This is particularly evident in 
the identification of blood vessels, despite the fact that crucial absorp
tion peaks of HbO2 at λ = 542 nm and λ = 572 nm are not present in the 
SLIMBRAIN data which could improve identify the different classes.

This extended analysis yields several key conclusions. Firstly, prior 
study of the material is crucial for appropriate tool selection. The per
formance of classifiers is influenced by the sensor type and spectral 
range, with superior results from higher quality HS equipment. Sec
ondly, enlarging the databases is essential for achieving more robust 
results. It was noted that reducing the number of training pixels while 
maintaining the variability of spectral signatures increases mean values. 
However, both the quantity and spectral quality of pixels are vital for 
training robust models. Moreover, the presence of false positives in the 
maps is likely due to the spatial resolution of the data. Thus, single color 
maps observed in the SLIMBRAIN database are due to spectrally noisy 
input images, resulting in grainy segmentation. High spatial resolution 
ensures each pixel represents a single tissue type, whereas low spatial 
resolution pixels may contain information from multiple tissues, leading 
to mixed spectral signatures and misclassifications. The results from the 
Unified dataset indicate that while HT remains robust across various al
gorithms and sampling strategies, TT shows improvement except in 1D- 
DNN classifiers. LIBRA, in particular, obtains a higher TT class classifi
cation performance compared to the rest of the models, which indicates 
that although it is not yet applicable for clinical applications, it works to 
manage data variability and data imbalance more effectively. This em
phasizes the importance of addressing class imbalance in datasets, 
especially for detecting less prevalent classes like tumors, where 
downsampling can enhance detection capabilities. Despite initial weak 
results, the preliminary study demonstrates that robust models can be 
developed using different databases and HS cameras, underlining the 
need to identify the relevant spectral range. In summary, the study un
derscores the importance of advanced ML/DL models and complex 
frameworks in enhancing brain tumor detection. Although HS data from 
in vivo human brain tissues is scarce, the work highlights the necessity of 
additional training data to develop more robust models, while ensuring 
that increased model complexity does not hinder the development of 
real-time solutions essential for neurosurgeons. Additionally, it points 
out that lower quality HS equipment, such as the snapshot camera from 
the SLIMBRAIN database, may result in less accurate classification since 
wavelengths that may provide more information are not captured (as 
can be appreciated with the results of the H128 database).

Fig. 8. Bar plots illustrating the mean and confidence interval of 95 % with the results obtained on the test sets after training with and without downsampling when 
using the Unified dataset. Plots illustrate the ACC, SEN, F1 Score, and MCC, respectively, for the HT, the TT, and for the BV tissue.
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Therefore, several future investigations are proposed to improve the 
results: first, increase the number of patients and labelled data in order 
to have more relevant information to increase the differentiation be
tween tumor and healthy tissue. Then, new DL algorithms shall be 
developed with innovative approaches in this research area, especially 
highlighting Graph Convolutional Networks (GCNs) and combinations 
between GCNs and CNNs [54]. Finally, perform an exhaustive study of 
different preprocessing techniques (e.g., Standard Normal Variate [55], 
Constrast Enhancement [56]), since adequate data preprocessing is the 
fundamental basis to guarantee the quality and efficiency of the classi
fication algorithms [20].
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