Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136898
Título: High Directivity Improvements using the Theory of Characteristic Modes for High-Resolution Imaging of Brain Tumors
Autores/as: El Moudden, Mouad
Ahmed, Badiaa Ait
Amdaouch, Ibtisam
Chaari, Mohamed Zied
Ruiz Alzola, Juan Bautista 
Aghzout, Otman
Clasificación UNESCO: 3325 Tecnología de las telecomunicaciones
3307 Tecnología electrónica
331499 Otras (especificar)
Palabras clave: Microwave antennas
Microwave integrated circuits
Patch antennas
High-resolution imaging
Resonant frequency, et al.
Fecha de publicación: 2024
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Conferencia: 1st International Conference on Computing, Internet of Things, and Microwave Systems (ICCIMS 2024) 
Resumen: This paper uses the theory of characteristic modes to improve the directivity of a rectangular microstrip patch antenna. The designed antenna is then excited in its high-directivity mode and integrated into a system together a human brain phantom. A confocal algorithm is employed to achieve high-resolution medical images, facilitating tumor diagnostics. In the first step, TCM analysis is performed to identify the resonant mode with the most favorable directivity. This analysis reveals the frequency of each mode and its radiation performance without excitation. Subsequently, the identified high-directivity mode is excited to generate high-resolution images of brain tumors, aiding in improved tumor detection and treatment. The technique presented in this paper proposes an innovative solution to determine the location of the brain tumor with high-resolution imaging, particularly in their early stages, while effectively overcoming inherent challenges such as the small size of the tumors.
URI: http://hdl.handle.net/10553/136898
ISBN: 979-8-3503-5173-6
DOI: 10.1109/ICCIMS61672.2024.10690765
Fuente: 2024 International Conference on Computing, Internet of Things and Microwave Systems (ICCIMS)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.