Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/136826
Title: Online signature verification based on the lagrange formulation with 2D and 3D robotic models
Authors: Diaz, Moises 
Ferrer, Miguel A. 
Gil, Juan M. 
Rodriguez, Rafael 
Zhang, Peirong
Jin, Lianwen
UNESCO Clasification: 331117 Equipos de verificación
330405 Sistemas de reconocimiento de caracteres
Keywords: Online signature verification
Generalized coordinates
Torques
Biometrics
Issue Date: 2025
Project: Robusteciendo Las Biometrías Del Movimiento de la Mano Mediante la Síntesis de Su Timbre Usando Métodos Computacionalesy Robóticos 
Detección de Movimientos Generados por Humanos y Máquinas. 
Journal: Pattern Recognition 
Abstract: Online Signature Verification commonly relies on function-based features, such as time-sampled horizontal and vertical coordinates, as well as the pressure exerted by the writer, obtained through a digitizer. Although inferring additional information about the writer's arm pose, kinematics, and dynamics based on digitizer data can be useful, it constitutes a challenge. In this paper, we tackle this challenge by proposing a new set of features based on the dynamics of online signatures. These new features are inferred through a Lagrangian formulation, obtaining the sequences of generalized coordinates and torques for 2D and 3D robotic arm models. By combining kinematic and dynamic robotic features, our results demonstrate their significant effectiveness for online automatic signature verification and achieving state-of-the-art results when integrated into deep learning models.
URI: http://hdl.handle.net/10553/136826
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2025.111581
Source: Pattern Recognition [ISSN 0031-3203], v. 164, (Agosto 2025)
Appears in Collections:Artículos
Adobe PDF (2,6 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.