Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136824
Campo DC Valoridioma
dc.contributor.authorEneriz, Danielen_US
dc.contributor.authorRodriguez-Almeida, Antonio J.en_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorOrtega Sarmiento,Samuelen_US
dc.contributor.authorBalea Fernandez, Francisco Javieren_US
dc.contributor.authorMedrano, Nicolas J.en_US
dc.contributor.authorCalvo, Belenen_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.date.accessioned2025-03-31T11:24:26Z-
dc.date.available2025-03-31T11:24:26Z-
dc.date.issued2022en_US
dc.identifier.isbn[9798350300970]en_US
dc.identifier.issn2325-8861en_US
dc.identifier.urihttp://hdl.handle.net/10553/136824-
dc.description.abstractThis work presents the advances of the UZ-ULPGC team in the Heart Murmur Detection from Phonocardiogram Recordings: The George B. Moody PhysioNet Challenge 2022. As the 2016 challenge proved the success of the combination of a segmentation algorithm and a classifier, a deep learning-based murmur detector is developed using the sequence segmentation-classification. A U-Net-based segmentation model is used to extract each cardiac cycle from the PCG with state-of-the-art accuracy. Three deep models are tested for the classification: a model based on four independent 1D-convolutional feature extractors; its variation enabling combination of the features; and an autoencoder. Furthermore, to enable unique patient diagnostic, a decision model gathering all the patient-related cardiac cycles information is added. All classifiers show limited performance, probably due to the heavy class imbalance of the data at the cardiac cycle level and the minimal preprocessing chosen in the architecture. Note that our models have not been tested in the hidden challenge data and therefore we are not ranked. Hence, a 10-fold cross-validation over the training set is used to evaluate their performance, with the best model getting a weighted accuracy score in the presence task of 0.58 ± 0.10 and 10 735 ± 2208 in Challenge cost score for the outcome.en_US
dc.languageengen_US
dc.relation.ispartofComputing in Cardiologyen_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherCardiologyen_US
dc.titleExploring a Segmentation-Classification Deep Learning-based Heart Murmurs Detectoren_US
dc.typeConference Paperen_US
dc.identifier.doi10.22489/CinC.2022.266en_US
dc.identifier.scopus2-s2.0-85152910887-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,212
dc.description.sjrq-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Psicología, Sociología y Trabajo Social-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0003-2028-0858-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameBalea Fernandez, Francisco Javier-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Actas de congresos
Adobe PDF (430,06 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.