Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/136605
Title: Optical Flow Estimation with Large Displacements: A Temporal Regularizer
Authors: Salgado De La Nuez, Agustín 
Sánchez Pérez, Javier 
UNESCO Clasification: 120304 Inteligencia artificial
Issue Date: 2006
Project: Reconstruccion de la Geometria 3D de Una Cara Humana A Partir de Un Sistema de Camarasy Aplicaciones 
Journal: Cuadernos del Instituto Universitario de Ciencias y Tecnologías Cibernéticas 
Abstract: The aim of this work is to propose a model for computing the optical flow in a sequence of images with a spatio–temporal regularizer explicitly designed for large displacements. We study the introduction of a temporal regularizer that expands the information beyond two consecutive frames. We propose to decouple the spatial and temporal regularizing terms to avoid an incongruous formulation between the data and smoothness term. We use the large optical flow constraint equation in the data term, the Nagel–Enkelmann operator for the spatial smoothness term and a newly designed temporal regularization. Our model is based on an energy functional that yields a partial differential equation (PDE). This PDE is embedded into a multipyramidal strategy to recover large displacements. A gradient descent technique is applied at each scale to reach the minimum. The numerical experiments show that thanks to this regularizer the results are more stable and accurate.
URI: http://hdl.handle.net/10553/136605
ISSN: 1575-6807
Source: Cuadernos del Instituto Universitario de Ciencias y Tecnologías Cibernéticas: Instituto Universitario de Ciencias y Tecnologías Cibernéticas. Universidad de Las Palmas de Gran Canaria, [ISSN 1575-6807], Nº 33, p. 1-22, (2006)
Appears in Collections:Artículos
Adobe PDF (632,37 kB)
Show full item record

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.