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Abstract

The aim of this work is to propose a model for computing the optical flow in a
sequence of images with a spatio–temporal regularizer explicitly designed for large dis-
placements. We study the introduction of a temporal regularizer that expands the
information beyond two consecutive frames. We propose to decouple the spatial and
temporal regularizing terms to avoid an incongruous formulation between the data and
smoothness term. We use the large optical flow constraint equation in the data term,
the Nagel–Enkelmann operator for the spatial smoothness term and a newly designed
temporal regularization. Our model is based on an energy functional that yields a par-
tial differential equation (PDE). This PDE is embedded into a multipyramidal strategy
to recover large displacements. A gradient descent technique is applied at each scale to
reach the minimum. The numerical experiments show that thanks to this regularizer
the results are more stable and accurate.

1 Introduction

In this paper we consider the problem of estimating the optical flow assuming that the objects
may undergo large displacements. The difference with respect to other related approaches is
that we exploit the temporal dimension of the sequence. Most of the better known methods
only deal with the problem of estimating the optical flow between two frames, ignoring that
the sequence comprises several images which are all related. We show in this paper that it
is possible to integrate the temporal information to improve the results and provide more
stable solutions.

We propose a variational technique in where an energy functional is minimized yielding
a diffusion–reaction PDE. These kind of energy–based approaches have been largely used
in optical flow estimation. Horn and Schunck [14], for instance, propose to minimize the
so–called optical flow constraint equation (OFC) together with a smoothing term depending
on the optical flow gradient. Later some authors have proposed several improvements to
overcome the shortcomings of this method like in [4], [9], [18], [10].
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In order to compute large displacements a common strategy is to use a multi–pyramidal
decomposition like in [4], [11] and [16] in where each scale is represented by decreasing size
of images. A different approach is that of Alvarez et al. [3] that uses a linear scale–space ap-
proach in the focusing strategy. The idea behind all these methods is the same: use coarsest
scales to compute raw estimates of the optical flow and utilize this as an approximation to
finer scales. In a recent paper by Brox et al. [8] the authors state that the latter and former
approaches are equivalent.

The first works on spatio–temporal methods are due to Nagel [17] and Black and Anandan
[5]. The former propose an extension of his oriented smoothness operator by including the
temporal dimension. The latter propose to compute the motion incrementaly assuming an
acceleration in time. In order to make this method more robust to noise, the acceleration
is averaged in time. More recently Weickert and Schnörr [23] propose a continuous model
with a nonlinear convex spatio–temporal smoothness constraint. The spatial and temporal
derivatives are formulated in a homogeneous way. Other related paper is due to Brox et
al. [8]. In this case a Total Variation functional is used in the data and smoothing terms.
The data term includes the large optical flow constraint equation and a gradient constancy
term. The smoothness term is formulated continuously with spatial and temporal derivatives
treated in the same manner.

In this work we propose a novel temporal regularizing term which is explicitly designed
to support for large displacements. The previous mentioned spatio–temporal methods treat
the spatial and temporal dimensions in the same way. We show here that when large dis-
placements are present, it is not suitable to use temporal derivatives. It is more convenient
to separate the temporal smoothing term. We also show that the major contributions of
spatio–temporal smoothness are given by more stable and accurate results. This is clearly
stated in the experimental results in where some comparisons with its corresponding spatial
method is carried out on synthetic and real sequences.

In Sect. 2 we give an overview on related optical flow methods and a study on the
generalization of spatial optical flows. In Sect. 2.1 we introduce and justify the use of
temporal regularizers. In Sect. 3 we derive the numerical scheme for the energy proposed
in the previous section and in Sect. 5 we demonstrate the performance of our method by
using synthetic and real sequences and compare with spatial methods. Finally in Sect. 6 the
conclusions.

2 The Method

The optical flow, h(x) = (u(x), v(x))T , is the apparent motion of pixels in a sequence of
images. One of the first in introducing a variational formulation for the computation of the
optical flow was Horn and Schunck [14]. They proposed the so–called optical flow constraint
equation

dI(x, t)

dt
= ∇I · h + It = 0 (1)
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which states that the image intensity remains constant through the sequence –known as the
Lambertian assumption–. This was a natural way to come across with the estimation of
the optical flow from a differential equation. They proposed to minimize the square of (1)
together with the square norm of the optical flow gradient.

Ec. (1) is valid when the object displacements in the scene are continuous. This is not the
case in our approach since the objects may undergo large displacements. A different formu-
lation which is the corresponding to the optical flow constraint equation in the discontinuous
case is

I1(x) − I2(x + h(x)) = 0 (2)

In fact, Ec. (1) is the Taylor expansion of (2) up to the first derivative, so the former is an
approximation to the latter equation. Ec. (1) and (2) are very similar in spirit but the latter
one only formulated for two frames. Extending Ec. (2) to consider all the frames and using
a squared functional we obtain the minimizer

N−1∑
i=1

(Ii(x) − Ii+1(x + hi(x)))2 (3)

where N is the number of frames and i subindex stands for the temporal dimension.
Other approaches different from the quadratic form are commonly used, thus, in general,

a data term will be a functional like

N−1∑
i=1

D (Ii(x), Ii+1(x),hi(x)) (4)

where D(.) could be chosen depending on the nature of the images. For instance, in papers
[6], [7], [15] the authors propose some robusts functionals instead of a quadratic form in
order to decrease the effect of outliers. It also may be replaced by other non–Lambertian
functionals in order to deal with more realistic image sequences. In paper [12] the authors
proposed a method for dealing with varying brightness of the image intensities and more
robust approaches are given in [22], [21] and [13], based on multimodal image matching to
deal with complex image intensity transformations.

We may still generalize Ec. (4) if we assume that there could be any relation not only
with consecutive frames but also with any two frames of the sequence. A more general data
term is

N∑
i=1

N∑
j=1,j �=i

D (Ii(x), Ij(x),hij(x)) (5)

in where we may consider that there exists an optical flow function between any two frames
– regard that in this case the forward and backward optical flows are introduced in a single
formulation–. Ec. (5) puts in correspondence frames that could be very far and introduces
an overload in the process due to the bigger amount of unknowns. This is interesting if we
want to carry out a long–term analysis of the data. Our purpose here is to show the benefits
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of introducing temporal regularizers for the estimation of optical flows, thus, in the following
we will use Ec. (3) which is a special case of (5).

Typically, the data term is accompanied by a smoothness term depending on the gradient
of the flow. Horn and Schunck [14], for instance, proposed to minimize the square norm of
the optical flow gradient

‖∇h‖2 = ‖∇u‖2 + ‖∇v‖2 (6)

which provides smooth solutions and yields an isotropic diffusion equation at the PDE.
This model has been improved during the last years and some authors has introduced some
different approaches in order to respect the image or flow discontinuities. A well–known
approach is that of Nagel–Enkelmann [18] that introduce an operator depending on the
image gradient that enables anisotropic diffusion in order to respect the object contours.
Other improvements are given by the methods explained in [3], [9], [20] and [10]. In paper
[24] the authors stablish a common framework to deal with different regularization terms
ranging from flow driven to image driven and from isotropic to anisotropic smoothing and
also study the existence and uniqueness of solutions.

Most of the above mentioned methods are designed for two frames. In our case we have
to extend the problem to multiple images by introducing an addition as we did for the data
term. In general, our regularizing term will depend on the optical flow gradient and also on
the image gradient

N−1∑
i=1

R (∇Ii(x),∇hi(x)) (7)

We may still generalize Ec. (7) to consider optical flow functions like in (5) as

N∑
i=1

N∑
j=1,j �=i

R (∇Ii(x),∇hij(x)) (8)

Regard that in this case we use a spatial gradient both for the images and for the optical
flows. This means that the regularization is only carried out spatially –most of the methods
explained so far use spatial regularizations–. In the following section we examine how to
introduce a temporal regularizer.

To sum up, our spatial energy is as follows:

E(h1, . . . ,hN−1) =

N−1∑
i=1

∫
Ω

D(Ii, Ii+1,hi) dω + α

N−1∑
i=1

∫
Ω

R(∇Ii,∇hi) dω (9)

In the sequel we use the standard optical flow constraint equation for large displacements
(3) in place of D(Ii, Ii+1,hi) and we choose the Nagel–Enkelmann operator for the smoothness
term.
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Following the generalizations of (5) and ( 7) a more general energy functional is

E(h12, . . . ,hN(N−1)) =
N∑

i=1

N∑
j=1,j �=i

∫
Ω

D(Ii, Ij ,hij) dω

+α
N∑

i=1

N∑
j=1,j �=i

∫
Ω

R(∇Ii,∇hij) dω (10)

2.1 Introducing a temporal regularizer

Most of the methods on variational optical flow estimation use spatial regularizers to enable
smooth solutions. Typically, the smoothness is restricted to two frames since there is no
transfer of information beyond consecutive images. There is no way to obtain a global
smooth solution when only spatial gradients are used. This shortcoming makes us think
of the need of introducing a temporal regularizer that enables an overall smoothing of the
optical flows.

Variational temporal regularizers have been introduced in some works like in [5] and
[17]. More recently Weickert and Schnörr [23] introduced a method in where they used the
continuous optical flow constraint equation (1) as data term and a regularizing term of the
form R(|∇3u|2 + |∇3v|2). In this case the temporal derivative is treated in the same manner
as the spatial derivatives. This has the advantage of beeing an homogeneous formulation
that does not make any difference between the spatial and temporal dimensions. The con-
tinuous formulation of this method restricts the scope of the method to images with small
displacements of the objects.

In [8] a similar method is proposed. In this case they use a data term which is based on
the large optical flow constraint equation (2) and as regularizing term they use a variation
of the approach in [23] –R(|∇3u|2 + |∇3v|2)–. The former is thus designed to support for
large displacements meanwhile the second is designed continuously which means that it only
supports for short displacements.

This proposal has two major inconveniences: the first one is due to the fact that the
temporal and spatial components of the gradient are coupled and when large displacements
are present, the temporal estimate inhibits regularization on the spatial domain; The second
inconvenience is due to the fact that the model uses a temporal derivative in the smoothness
term, so it supposes a continuity of the flow in time but the data term allows discontinuities
in time.

A simple way to overcome the first drawback is to replace R(|∇3u|2 + |∇3v|2) with
separate spatial and temporal regularizers as R(|∇u|2 + |∇v|2)+T (|ut|2 + |vt|2), but still the
temporal term is formulated continuously. If we also want to deal with large displacements,
then it is necessary to replace the temporal derivative with a different estimate.

Let us know consider what kind of estimates we might use in T (.). If h(x) is large at
a given point x then it does not make sense to compute ht = (ut, vt)

T , since it will not
be continuous. If we suppose that the object velocities are smooth in the sequence, then
we know that given two consecutive frames the value of the optical flow, hi(x), for a given
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frame should be similar to the optical flow in the following frame at the position given by
hi+1(x + hi(x)). Our estimate should be a functional of the form T (hi(x),hi+1(x + hi(x))).

We propose the following energy

E(h) =

N−1∑
i=1

∫
Ω

D(Ii, Ii+1,hi) dω

+α
N−1∑
i=1

∫
Ω

R(∇Ii,∇hi) dω

+β
N−1∑
i=1

∫
Ω

T (hi,hi+1) dω (11)

As we mentioned before we use the large optical flow constraint equation (3) for D(.),
the Nagel–Enkelmann operator for R(.) and T (hi,hi+1) = Φ(‖hi − hi+1(x + hi)‖2)

E(h) =
N−1∑
i=1

∫
Ω

(Ii − Ii+1 (x + hi))
2 dω

+α
N−1∑
i=1

∫
Ω

trace(∇hT
i D(∇Ii)∇hT

i ) dω

+β

N−2∑
i=1

∫
Ω

Φ(‖hi − hi+1(x + hi)‖2) dω (12)

where Φ(x2) = 1− γe−
x2

γ . This is the same as saying that the optical flows remain constant
all through the sequence. When displacements are very small, hi − hi+1(x + hi) is an
approximation of the temporal derivative. This kind of estimate will favour translational
with constant velocities.

One inconvenience of the previous approach is that there is only transfer of information
from the last optical flows towards the early ones. One way to compensate for this is to turn
the method symmetrical by including the backward optical flows, h∗ (see appendix A), as
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E(h) =

N−1∑
i=1

∫
Ω

(Ii − Ii+1 (x + hi))
2 dω

+α
N−1∑
i=1

∫
Ω

trace(∇hT
i D(∇Ii)∇hT

i ) dω

+β
N−2∑
i=1

∫
Ω

Φ(‖hi − hi+1(x + hi)‖2) dω

+β

N−1∑
i=2

∫
Ω

Φ(
∥∥hi − hi−1(x + h∗

i−1)
∥∥2

) dω (13)

With the last two integrals we are implicitly assuming a model for the object velocities.
We enforce that the hi functions be similar in magnitude and direction, so this scheme is
more suitable for objects that move with constant velocity in a permanent direction. When
it moves away from this model, function Φ(.) will decrease the effect of T (.) and the temporal
regularization will be useless.

It is difficult to find a simple model for T (.) that takes into account all the possible config-
urations of velocities of a real sequence. Different alternatives of the temporal term may be

given by different functionals like Φ(‖hi‖2−‖hi+1(x + hi)‖2)+Φ(‖hi‖2−
∥∥hi−i(x + h∗

i−1)
∥∥2

)
in where we minimize the difference between the magnitude of the optical flows, which could
favour constant velocities estimation independently of whether they rotate or traslate. In
any case, we are assuming a displacement pattern that will favour some kind of movements
opposed to others.

3 Minimizing the Energy

In order to obtain a solution to our energy we derive the Euler–Lagrange equations:

0 = − (Ii(x) − Ii+1(x + hi))∇Ii+1(x + hi)

−α (div(D (∇hi)∇ui),div(D (∇hi)∇vi))
T

+β Φ′(‖hi − hi+1(x + hi)‖2)

·
(
(hi − hi+1(x + hi))

T (Id−∇hT
i+1(x + hi)

))
+βΦ′(

∥∥hi − hi−1(x + h∗
i−1)
∥∥2

)

·
(
hi − hi−1(x + h∗

i−1)
)

(14)

We apply a gradient descent technique to reach the solution of the previous system of
equations:
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∂hi

∂t
= (Ii(x) − Ii+1(x + hi))

∂Ii+1(x + hi)

∂x

+α (div(D (∇hi)∇ui),div(D (∇hi)∇vi))
T

−β Φ′(‖hi − hi+1(x + hi)‖2)

·
(
(hi − hi+1(x + hi))

T (Id−∇hT
i+1(x + hi)

))
−β Φ′(

∥∥hi − hi−1(x + h∗
i−1)
∥∥2

)

·
(
hi − hi−1(x + h∗

i−1)
)

(15)

where i = 1, . . . N − 1, thus we have a system of N − 1 pair of equations correponding to the
optical flows of the complete sequence.

We embed this gradient descent equations into a multi–pyramidal approach to deal with
large displacements. This is a coarse–to–fine strategy commonly used in other works on
optical flow estimation like in [4], [11], [8] and [16]. We create a pyramid of scales for the
whole sequence with different size of images and solve the previous system of equations at
each level. Once we obtain a stable solution for a scale we use this as a first estimate for a
finer scale.

Therefore we have a number of scales s1, s2, . . . sn each one representing different size of
images. Normally the pyramid is formed by half sized images – the ratio between two images
is 0,5 – but other ratios may be considered like in [8] where they propose to use a reduction
factor η between 0,5 and 0,95. At each scale we solve the previous system of equations for the
whole set of unknows {us

i , v
s
i } and then we use this as a first approximation for the following

scale {us1
i , vs1

i } → {us2
i , vs2

i } → . . . {usn
i , vsn

i }.

4 Numerical scheme

In this section we describe an implicit numerical scheme to solve the system of equations given
by (15). We use finite differences to approximate the spatial derivatives. Using the following

notation for the components of matrix D (∇Ii,j,k) =

(
a b
b c

)
our numerical approximation

is given by
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un+1
i,j,k − un

i,j,k

τ
=

(
Ii,j,k − I

hn
i,j,k

i,j,k+1 + un+1
i,j,kI

hn
i,j,k

xi,j,k+1 + vn+1
i,j,kI

hn
i,j,k

yi,j,k+1

)
I
hn

i,j,k
xi,j,k+1

−un+1
i,j,kI

2,hn
i,j,k

xi,j,k+1 − vn+1
i,j,kI

hn
i,j,k

yi,j,k+1I
hn

i,j,k
xi,j,k+1

+α

(
ai+1,j,k + ai,j

2

un+1
i+1,j,k − un

i,j,k

h2
1

+
ai−1,j,k + ai,j

2

un+1
i−1,j,k − un+1

i,j,k

h2
1

+
ci,j+1,k + ci,j

2

un+1
i,j+1,k − un+1

i,j,k

h2
2

+
ci,j−1,k + ci,j

2

un+1
i,j−1,k − un+1

i,j,k

h2
2

+
bi+1,j+1,k + bi,j

2

un+1
i+1,j+1,k − un+1

i,j,k

2h1h2
+

bi−1,j−1,k + bi,j

2

un+1
i−1,j−1,k − un+1

i,j,k

2h1h2

+
bi+1,j−1,k + bi,j

2

un+1
i+1,j−1,k − un+1

i,j,k

2h1h2
+

bi−1,j+1,k + bi,j

2

un+1
i−1,j+1,k − un+1

i,j,k

2h1h2

)

−βΦ′
[(

un+1
i,j,k − u

n,hn
i,j,k

i,j,k+1 + un+1
i,j,ku

n,hn
i,j,k

xi,j,k+1 + vn+1
i,j,ku

n,hn
i,j,k

yi,j,k+1

)(
1 − u

n,hn
i,j,k

xi,j,k+1

)
−un+1

i,j,ku
n,hn

i,j,k
xi,j,k+1

(
1 − u

n,hn
i,j,k

xi,j,k+1

)
− vn+1

i,j,ku
n,hn

i,j,k
yi,j,k+1

(
1 − u

n,hn
i,j,k

xi,j,k+1

)
+
(
vn+1

i,j,k − v
n,hn

i,j,k

i,j,k+1 + un+1
i,j,kv

n,hn
i,j,k

xi,j,k+1 + vn+1
i,j,kv

n,hn
i,j,k

yi,j,k+1

)
v

n,hn
i,j,k

xi,j,k+1

−un+1
i,j,kv

2,n,hn
i,j,k

xi,j,k+1 − vn+1
i,j,kv

n,hn
i,j,k

yi,j,k+1v
n,hn

i,j,k
xi,j,k+1

]
−βΦ′

[
un+1

i,j,k − u
n,h∗,n

i,j,k

i,j,k+1

]
(16)
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vn+1
i,j,k − vn

i,j,k

τ
=

(
Ii,j,k − I

hn
i,j,k

i,j,k+1 + un+1
i,j,kI

hn
i,j,k

xi,j,k+1 + vn+1
i,j,kI

hn
i,j,k

yi,j,k+1

)
I
hn

i,j,k
yi,j,k+1

−un+1
i,j,kI

hn
i,j,k

xi,j,k+1I
hn

i,j,k
yi,j,k+1 − vn+1

i,j,kI
2,hn

i,j,k
yi,j,k+1

+α

(
ai+1,j,k + ai,j

2

vn+1
i+1,j,k − vn+1

i,j,k

h2
1

+
ai−1,j,k + ai,j

2

vn+1
i−1,j,k − vn+1

i,j,k

h2
1

+
ci,j+1,k + ci,j

2

vn+1
i,j+1,k − vn+1

i,j,k

h2
2

+
ci,j−1,k + ci,j

2

vn+1
i,j−1,k − vn+1

i,j,k

h2
2

+
bi+1,j+1,k + bi,j

2

vn+1
i+1,j+1,k − vn+1

i,j,k

2h1h2
+

bi−1,j−1,k + bi,j

2

vn+1
i−1,j−1,k − vn+1

i,j,k

2h1h2

+
bi+1,j−1,k + bi,j

2

vn+1
i+1,j−1,k − vn+1

i,j,k

2h1h2
+

bi−1,j+1,k + bi,j

2

vn+1
i−1,j+1,k − vn+1

i,j,k

2h1h2

)

−βΦ′
[(

vn+1
i,j,k − v

n,hn
i,j,k

i,j,k+1 + un+1
i,j,kv

n,hn
i,j,k

xi,j,k+1 + vn+1
i,j,kv

n,hn
i,j,k

yi,j,k+1

)(
1 − v

n,hn
i,j,k

yi,j,k+1

)
−un+1

i,j,kv
n,hn

i,j,k
xi,j,k+1

(
1 − v

n,hn
i,j,k

yi,j,k+1

)
− vn+1

i,j,kv
n,hn

i,j,k
yi,j,k+1

(
1 − v

n,hn
i,j,k

yi,j,k+1

)
+
(
un+1

i,j,k − u
n,hn

i,j,k

i,j,k+1 + un+1
i,j,ku

n,hn
i,j,k

xi,j,k+1 + vn+1
i,j,ku

n,hn
i,j,k

yi,j,k+1

)
u

n,hn
i,j,k

yi,j,k+1

−un+1
i,j,ku

n,hn
i,j,k

xi,j,k+1u
n,hn

i,j,k
yi,j,k+1 − vn+1

i,j,ku
2,n,hn

i,j,k
yi,j,k+1

]
−βΦ′

[
vn+1

i,j,k − v
n,h∗,n

i,j,k

i,j,k+1

]
(17)

where j, k stands for the pixel location and I
hn+1

i,j,k

i+1,j,k = Ii+1(xj,k + hn+1
i,j,k). Subindex i still

represents the temporal dimension,τ is the time step which is always fixed in the experimental
results to 10 and vyi,j,k+1

represents the y derivative of v at frame i in pixel (j, k + 1) also
approximated with finite differences.

We solve the previous linear system (16) and (17) iteratively by a Gauss–Seidel algorithm.

5 Experimental Results

The purpose of these experimental results is to show the performance of our novel method
with respect to its spatial counterpart. We are also interested in comparing this new
method with its simple form given by the forward temporal cost matching function T (x) =
Φ(‖hi − hi+1( + hi)‖2). In the sequel we name the spatial method – Eq. (9) – as ”Spa-
tial”, the simpler temporal method as ”Temporal” and the complete temporal method as
”Bi–Temporal” or ”Bidirectional–Temporal” – Eq. (13) –.
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5.1 Translating square

The first sequence consists of ten frames with a black square moving ten pixels horizontally
forward with a constant velocity over a white background. In Fig. 1 we can see several
frames of the sequence. In Fig. 2 and 3 we show the euclidean and angular errors for all the
frames using the three methods. In table 1 we show the mean angular and euclidean errors.

Figure 1: Frames 0, 4 and 9 of the square sequence.

From table 1 and Fig. 2 and 3 we can see that the temporal methods are very stable:
the euclidean and angular errors for all the frames are very similar. However, the ”Spatial”
method is clearly unstable.

The improvement of the ”Temporal” method with respect to its spatial counterpart is
about 13,79% of the angular error and in the case of the ”Bi–Temporal” is about 24,14%.
The euclidean error for the ”Temporal” method is bigger than the spatial method. This is
justifiable because the last optical flow has a big error with respect to the rest of frames.
The simple temporal method does not improve the last solution because it does not receive
information from other frames. Even more, when this last estimate is bad, it propagates the
bad guests to the rest of sequence. In the case of the ”Bi–Temporal” method the improvement
with respect to the spatial one is about 31,58%. This method is not affected by the last
optical flow as in the previous case.

Figure 2: Euclidean error for the square sequence.

The performance of the temporal methods is much better than the spatial method. In this
test, the optical flow is constant in magnitude and orientation. This kind of displacements
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Figure 3: Angular error for the square sequence.

Method AEµ AEσ EEµ EEσ

Spatial 0,029o 3,6E-3o 0,0189 0,013
Temporal 0,025o 3,7E-4o 0,0246 3,8E-4
Bi-Temporal 0,022o 3,0E-5o 0,0132 1,9E-4

Table 1: Mean angular and euclidean errors for the square sequence: AEµ is the mean
angular error and AEσ its standard deviation; EEµ is the mean euclidean error and EEσ its
standard deviation.

can be estimated with high accuracy using our temporal term. Thus our method is very
suitable for objects displacing with constant velocity through a given direction.

5.2 Marble Blocks

We used the Marble Block sequence – Fig. 4 – for the second test. This sequence is com-
posed of 30 frames and is copyright by H.-H. Nagel (KOGS/IAKS, University of Karlsruhe,
Germany, at http://i21www.ira.uka.de/image sequences/.

Figure 4: Frames 0, 10 and 20 of the Marble Blocks sequence.

In Fig. 5 we can see the ground truth and the flows obtained with the spatial and
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temporal methods.

Figure 5: On the left, the true disparity associated with frame 10; in the middle, the optical
flow corresponding to the spatial method; and, on the right, the solution for the bidirectional
temporal method.

If we look at this image we observe that both solutions are similar but there are some
differences: The floor is smoother in the temporal disparity map and the background is
more respected. The right tower that disappears seems more continuous but, on the other
hand, in the middle of the two left–most towers the disparity maps seem under–estimated.
Globally, the temporal method seems to have better estimated the object discontinuities and
the results inside each object are smoother.

In Figs. 6 and 7 we show the euclidean and angular errors for every frame of the sequence –
for convenience we only show the central frames –. In both cases the spatial method provides
worse and less stable results. Nearly all the results for the temporal methods are improved.
In all cases, the ”Bi-Temporal” performs in a similar way as the ”Temporal” but with a
smaller magnitude.

Figure 6: Euclidean error for the Marble Block sequence.

As we could expect, the results obtained for this sequence are improved. This sequence
is similar to the translating square in the sense that the objects are moving with constant
velocity in the same direction. In fact, the average motion of the sequence is 1,33 – with
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Figure 7: Angular error for the Marble Block sequence.

standard deviation 0,03 – except for frames 4, 8, 13, 18, 23 and 28 in which the average
motion is 1,58 – with standard deviation 0,02–. This means that there is a shift on the
magnitude of the velocities at these frames. If we look at these frames in Figs.6 and 7 we
observe maximum peaks that reduce the stability of the temporal methods. We suppose
that this sequence was captured with different frame rates at these particular frames.

Method AEµ AEσ EEµ EEσ

Spatial 6,695o 2,698o 0,2480 0,0963
Temporal 5,402o 1,327o 0,2081 0,0638
Bi-Temporal 4,731o 1,330o 0,1848 0,0661

Table 2: Mean angular and euclidean errors for the Marble Block sequence.

In table 2 we show the angular and euclidean errors and their standard deviations. The
improvement of the ”Temporal” method with respect to the ”Spatial” one is about 19,31%
for the angular error and 12,05% for the euclidean error. The improvement of the ”Bi-
Temporal” is about 29,33% for the angular and 25,48% for the euclidean error. In both
cases the standard deviations are considerably reduced in a similar magnitude.

5.3 Yosemite

For the last synthetic test we used the Yosemite sequence – Fig. 8 –. This sequence was
created by Lynn Quam and is available at ftp://ftp.csd.uwo.ca/pub/ vision. A simpler version
without clouds is available at http://www.cs.brown.edu/people/ black/images.html.

It combines both divergent and translational motions. The scene simulates a plane travel
over the Yosemite mountains. The divergent motion is predominant. Motions in the center
of the scene are nearly zero and there are different velocities and accelerations. This kind
of displacements are not suitable for our model but we are interested on the study of the
behaviour of our model with different configurations.
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Figure 8: Frames 0, 7 and 14 of the Yosemite sequence.

In Fig. 9 we show the true disparity map and that provided by the spatial and bidirec-
tional temporal methods. The differences of the last two are not appreciable, but if we look
at the euclidean and angular errors – Figs. 10 and 11 – we may obtain some conclusions.

Figure 9: On the left, the true disparity map; in the middle, the result of the spatial method;
and, on the right, the disparity map obtained with the bidirectional temporal method.

Figure 10: Euclidean error for the Yosemite sequence.

As we could expect, in both cases the errors due to the temporal methods are bigger. The
simple temporal method propagates the bad results from the last frame to the previous ones,
so the error increases backwards. The bidirectional temporal method performs much better
and we can clearly observe that it is independent of the last optical flow. In this case the
errors are not so stable and its behaviour is very similar to the spatial method. This means
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Figure 11: Angular error for the Yosemite sequence.

that the temporal term make worse estimates but in some sense it is reduced by means of
the threshold effect of the Φ(.) function.

Method AEµ AEσ EEµ EEσ

Spatial 3,37o 0,65o 0,19 0,06
Temporal 6,21o 0,77o 0,35 0,02
Bi-Temporal 3,90o 0,33o 0,23 0,05

Table 3: Mean angular and euclidean errors for the Yosemite sequence.

In table 3 we show the angular and euclidean errors for this sequence. The standard
deviations points out that the stability of the solution is still held in comparison with the
spatial solution. The bidirectional temporal method does not diverge of the spatial solution
as the simple one does.

A model depending on the temporal derivative of the optical flow – like that proposed in
[8] – is more suitable to these kind of displacements because the optical flow is continuous.

5.4 Taxi

For the last test we used the Taxi sequence – Fig. 12 – which is a real sequence that
contains 40 frames. This sequence is copyright by H.-H. Nagel (KOGS/IAKS, University of
Karlsruhe, Germany, at http://i21www.ira.uka.de/ image sequences/ ).

In Fig. 13 we show the solutions of the spatial and bidirectional temporal methods.
In this sequence there are four objects that are moving: the car on the left bottom

corner, the taxi, the truck on the right bottom corner and a pedestrian on the pavement.
The main differences between the spatial and temporal methods are the following: The
background in the temporal solution is more stable. The solution for the taxi and the truck
are very similar in both cases, but the car seems to be better estimated in the spatial method.
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Figure 12: Frames 0, 10 and 19 of the Taxi sequence.

Figure 13: On the left the result of the spatial method; and, on the right, the disparity map
obtained with the bidirectional temporal method.

Finally the pedestrian movement appears on the temporal and not on the spatial solution.
The most remarkable difference is the background in where the objects are not moving. The
spatial regularization is not enough to overcome the problems of local noise and the temporal
regularization clearly copes with these small variations.

6 Conclusions

With this work we have proposed a novel variational method that includes a temporal
smoothness term. This method may be considered as a generalization of previous related
spatial methods. We have overcome the inconveniences of other methods that use a coupled
temporal–spatial regularizing term which is more suitable for small displacements due to the
inclusion of temporal derivatives.

We have created a new term that minimizes the difference of the optical flows that permits
large displacements of the objects.

There are some authors that claim that the temporal and spatial regularizations should
be treated in the same manner. This is true if we assume the continuous model. Once we
have assumed a discontinuous model then it is not convenient to model the temporal and
spatial regularizers in the same way.

The design of this new term promotes the constant velocity of particles all through the
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sequence, so it is well suited for sequences that are translating in a fixed direction. There
will not be any improvement for non translating motions, but due to the Φ(.) function in the
temporal smoothness term there will be a small penalisation if other kind of displacements
are present.

We have shown the necessity of including the backward flow in the energy functional.
All the comparisons show that the bidirectional temporal method clearly outperforms the
simpler temporal method.

As we can observe in the experimental results, the numerical studies show that this
method provides more stable results. We have also shown that when translating motions are
present on the scene then there is an increase of accuracy in all the frames.

To our knowledge, this is the first approach that considers temporal regularizations with
large displacements. It is specially good for translational movements and it does not get far
solutions from the spatial method if other displacements are present.

In future works we will examine more general temporal smoothnes terms that allow us to
consider different kind of displacements. It seems natural to use the temporal information to
try to improve the optical flow, but there is still a lot of things to understand before finding
a basic method that takes into account all the complexity of the temporal dimension.
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A Computing the backward flow, h∗

In this apendix we examine how to compute the backward flow directly from the forward
flow. It is easy to see that the correspondence between both flows is

h(x) = −h∗(x + h(x)) (18)

The main difficulty here is to deal with discrete images. In our problem the function
h(x) is real but the locations x are integers –image pixels–. The h∗(x) only has values in
some discrete positions. As we can see in Fig. 14 the correspondence will not be exact so
we have to adjust the value of h∗(x) depending on the portion of pixels that arrive to our
destiny pixel. In general, there will be several correspondences that distruibute their values
on a single pixel, so we have to compute an average of all the portions of the flows that fall
down in each pixel.

Considering the discrete nature of h∗(x) we may compute its value in each position
according to this functional

h∗(xi) = −
∑N

j=1 h(xj)pi,j

(
xi,xj+h(xj)

)
∑N

j=1 pi,j

(
xi,xj+h(xj)

)
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Figure 14: The composition of an integer position, x, and the real function, h(x), generate
a mismatching in the positions of h∗(x). As we can see in this figure, we have to divide
each correspondence in four different estimates –four different pixels– in order to compute
the values of the discrete function h∗(x).

where N is the size of the image and pi,j stands for the area of the pixel that is covered by
the optical flow as can be seen in Fig. 14. Each xj+h(xj) will generate four different pi,j

that will lie on neighouring pixels. Lets see how we compute these weights. To simplify we
call a = (ax, ay) = xi and b = (bx, by) = xj+h(xj)

pi,j (a,b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − (bx − ax)) · (1 − (by − ay)) if ax < bx and ay < by

(1 − (bx − ax)) · (by − ay) if ax < bx and ay > by

(bx − ax) · (1 − (by − ay)) if ax > bx and ay < by

(bx − ax) · (by − ay) if ax > bx and ay > by

0 if distance (a,b) ≥ 1

This is no more than the computation of the proportional area for the four neighbours.
There still remains to consider a further issue which are the empty pixels,xi, that have

no correspondence in the other image –maybe due to occlusions–. Normally these pixels are
situated close to the object boundaries in the sense of their displacements.

One way to manage this is to label the pixels as occlusions and to modify the method in
order to avoid estimating the flow at these locations or only to apply the regularizing term
to the occlusions. This could be a better approach but there are two inconveniences: 1) The
first is that we only detect these occlusions in h∗(xi) so we would favour one of the estimates;
2) The second is that handling occlusions is not straight forward and there is an overload on
the formulation of the method. Our purpose here is not to propose a complex method but
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only to study the behaviour of temporal smoothness terms. In papers [2] and [1] we have
presented two works on the estimation of symmetrical optical flows for two images in where
we dealt with occlusions.

For these reasons we apply a post–processing step in order to fill up the holes. This is
a simple step in where after several iterations we complete the information of the holes by
averaging with the information from the neighbours.
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