Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136446
Título: Enhancing Breast Cancer Histopathological Image Classification: The Impact of Stain Normalization on Multilevel Feature Extraction
Autores/as: Benmabrouk, Yasmina
Djaffal, Souhaila
Gasmi, Mohamed
Djeddi, Chawki
Díaz Cabrera, Moisés 
Bendjenna, Hakim
Clasificación UNESCO: 32 Ciencias médicas
320709 Histopatología
Palabras clave: Breast cancer
Histopathological images
Feature extraction
Stain normalization
Low-level features, et al.
Fecha de publicación: 2025
Publicación seriada: Biomedical Signal Processing and Control 
Resumen: Histopathological examination involves the microscopic analysis of breast tissue samples, which is crucial for diagnosing and classifying breast cancer. Recent advancements in artificial intelligence have led to the development of machine learning and deep learning models for classifying histopathological images. Feature extraction depends heavily on the quality and uniformity of the input data. Stain normalization techniques are employed to standardize the visual appearance of images, ensuring a consistent representation of underlying tissue structures. This research explores the impact of stain normalization on various image features used to classify breast cancer histopathological images. We investigate low-, mid-, and high-levels of feature extraction with different classifiers for the multiclass classification of the Breast Cancer Histology dataset (BACH). The findings demonstrated that stain normalization methods are instrumental in enhancing the interpretability and dependability of histopathological image analysis across multiple levels.
URI: http://hdl.handle.net/10553/136446
ISSN: 1746-8094
DOI: 10.1016/j.bspc.2025.107700
Fuente: Biomedical Signal Processing and Control [ISSN 1746-8094], v. 106 (Febrero 2025)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.