Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/136218
Title: | Evolution of Burned Area in Forest Fires under Climate Change Conditions in Southern Spain Using ANN | Authors: | Pérez Sánchez, Julio Jimeno-Sáez, Patricia Senent-Aparicio, Javier Díaz-Palmero, José María Cabezas-Cerezo, Juan de Dios |
UNESCO Clasification: | 3106 Ciencia forestal 310603 Control de la erosión 310606 Protección |
Keywords: | Wildfire ANN Climate change Confusion matrix K-fold cross-validation, et al |
Issue Date: | 2019 | Journal: | Applied Sciences (Basel) | Abstract: | Wildfires in Mediterranean regions have become a serious problem, and it is currently the main cause of forest loss. Numerous prediction methods have been applied worldwide to estimate future fire activity and area burned in order to provide a stable basis for future allocation of fire-fighting resources. The present study investigated the performance of an artificial neural network (ANN) in burned area size prediction and to assess the evolution of future wildfires and the area concerned under climate change in southern Spain. The study area comprised 39.41 km2 of land burned from 2000 to 2014. ANNs were used in two subsequential phases: classifying the size of the wildfires and predicting the burned surface for fires larger than 30,000 m2. Matrix of confusion and 10-fold cross-validations were used to evaluate ANN classification and mean absolute deviation, root mean square error, mean absolute percent error and bias, which were the metrics used for burned area prediction. The success rate achieved was above 60–70% depending on the zone. An average temperature increase of 3 °C and a 20% increase in wind speed during 2071–2100 results in a significant increase of the number of fires, up to triple the current figure, resulting in seven times the average yearly burned surface depending on the zone and the climate change scenario. | URI: | http://hdl.handle.net/10553/136218 | ISSN: | 2076-3417 | DOI: | 10.3390/app9194155 | Source: | Applied Sciences [ISSN 2076-3417], v. 9 (19), 4155 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
17
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
13
checked on Mar 30, 2025
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.