Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/134872
DC FieldValueLanguage
dc.contributor.authorPérez García, Ámbaren_US
dc.contributor.authorMartín Lorenzo, Albaen_US
dc.contributor.authorHernández Suárez, Emma Cristinaen_US
dc.contributor.authorRodriguez Molina, Adrianen_US
dc.contributor.authorvan Emmerik, Tim H. M.en_US
dc.contributor.authorLópez, José F.en_US
dc.date.accessioned2024-11-29T19:39:31Z-
dc.date.available2024-11-29T19:39:31Z-
dc.date.issued2024en_US
dc.identifier.issn2072-4292en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/134872-
dc.description.abstractIn environmental studies, rhodamine dyes are commonly used to trace water movements and pollutant dispersion. Remote sensing techniques offer a promising approach to detecting rhodamine and estimating its concentration, enhancing our understanding of water dynamics. However, research is needed to address more complex environments, particularly optically shallow waters, where bottom reflectance can significantly influence the spectral response of the rhodamine. Therefore, this study proposes a novel approach: transferring pre-trained classifiers to develop a generalizable method across different environmental conditions without the need for in situ calibration. Various samples incorporating distilled and seawater on light and dark backgrounds were analyzed. Spectral analysis identified critical detection regions (400-500 nm and 550-650 nm) for estimating rhodamine concentration. Significant spectral variations were observed between light and dark backgrounds, highlighting the necessity for precise background characterization in shallow waters. Enhanced by the Sequential Feature Selector, classification models achieved robust accuracy (>90%) in distinguishing rhodamine concentrations, particularly effective under controlled laboratory conditions. While band transfer was successful (>80%), the transfer of pre-trained models posed a challenge. Strategies such as combining diverse sample sets and applying the first derivative prevent overfitting and improved model generalizability, surpassing 85% accuracy across three of the four scenarios. Therefore, the methodology provides us with a generalizable classifier that can be used across various scenarios without requiring recalibration. Future research aims to expand dataset variability and enhance model applicability across diverse environmental conditions, thereby advancing remote sensing capabilities in water dynamics, environmental monitoring and pollution control.en_US
dc.languageengen_US
dc.relationTALENT-HExPERIA PID2020-116417RB-C42en_US
dc.relation.ispartofRemote Sensingen_US
dc.sourceRemote Sensing [ISSN 2072-4292] ,v. 16, n. 16, 3090, (Agosto 2024)en_US
dc.subject330790 Microelectrónicaen_US
dc.subject.otherFluorescent Tracersen_US
dc.subject.otherDispersionen_US
dc.subject.otherDiffusionen_US
dc.subject.otherDyeen_US
dc.subject.otherDye Trackingen_US
dc.subject.otherRhodamineen_US
dc.subject.otherArtificial Intelligenceen_US
dc.subject.otherBand Selectionen_US
dc.titleDeveloping a Generalizable Spectral Classifier for Rhodamine Detection in Aquatic Environmentsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/rs16163090en_US
dc.identifier.isi001306734500001-
dc.identifier.eissn2072-4292-
dc.identifier.issue16-
dc.relation.volume16en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages18en_US
dc.utils.revisionNoen_US
dc.contributor.wosstandardWOS:Pérez-García, A-
dc.contributor.wosstandardWOS:Lorenzo, AM-
dc.contributor.wosstandardWOS:Hernández, E-
dc.contributor.wosstandardWOS:Rodríguez-Molina, A-
dc.contributor.wosstandardWOS:van Emmerik, THM-
dc.contributor.wosstandardWOS:López, JF-
dc.date.coverdateAgosto 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,091
dc.description.jcr4,2
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-2943-6348-
crisitem.author.orcid0000-0001-7590-7895-
crisitem.author.orcid0000-0002-6304-2801-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePérez García, Ámbar-
crisitem.author.fullNameMartín Lorenzo, Alba-
crisitem.author.fullNameHernández Suárez, Emma Cristina-
crisitem.author.fullNameRodriguez Molina, Adrian-
crisitem.author.fullNameLópez Feliciano, José Francisco-
Appears in Collections:Artículos
Adobe PDF (14,97 MB)
Show simple item record

WEB OF SCIENCETM
Citations

2
checked on Mar 30, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.