Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134864
Campo DC Valoridioma
dc.contributor.authorAjali-Hernández, Nabil I.en_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.date.accessioned2024-11-29T10:33:36Z-
dc.date.available2024-11-29T10:33:36Z-
dc.date.issued2024en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/134864-
dc.description.abstractThe emergence of the COVID-19 pandemic in 2019 and its rapid global spread put healthcare systems around the world to the test. This crisis created an unprecedented level of stress in hospitals, exacerbating the already complex task of healthcare management. As a result, it led to a tragic increase in mortality rates and highlighted the urgent need for advanced predictive tools to support decision-making. To address these critical challenges, this research aims to develop and implement a predictive system capable of predicting pandemic evolution with accuracy (in terms of Mean Absolute error (MAE), Root Mean Square Error (RMSE), R2, and Mean Absolute Percentage Error (MAPE)) and low computational and economic cost. It uses a set of interconnected Long Short Term-memory (LSTM) with double bidirectional LSTM (BiLSTM) layers together with a novel preprocessing based on future time windows. This model accurately predicts COVID-19 cases and hospital occupancy over long periods of time using only 40% of the set to train. This results in a long-term prediction where each day we can query the cases for the next three days with very little data. The data utilized in this analysis were obtained from the “Hospital Insular” in Gran Canaria, Spain. These data describe the spread of the coronavirus disease (COVID-19) from its initial emergence in 2020 until March 29, 2022. The results show an improvement in MAE (< 161), RMSE (< 405), and MAPE (> 0.20) compared to other studies with similar conditions. This would be a powerful tool for the healthcare system, providing valuable information to decision-makers, allowing them to anticipate and strategize for possible scenarios, ultimately improving public health outcomes and optimizing the allocation of healthcare and economic resources.en_US
dc.languageengen_US
dc.relation.ispartofScientific Reportsen_US
dc.sourceScientific Reports[EISSN 2045-2322],v. 14 (1), (Diciembre 2024)en_US
dc.subjectInvestigaciónen_US
dc.subject.otherCovid Predictionen_US
dc.subject.otherCovid-19en_US
dc.subject.otherDaily Coviden_US
dc.subject.otherHospital Occupancyen_US
dc.subject.otherLstmen_US
dc.titleNovel cost-effective method for forecasting COVID-19 and hospital occupancy using deep learningen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1038/s41598-024-69319-1en_US
dc.identifier.scopus85208137187-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58753045800-
dc.contributor.authorscopusid57219115631-
dc.identifier.eissn2045-2322-
dc.identifier.issue1-
dc.relation.volume14en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Adobe PDF (2,2 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.