
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:25982  | https://doi.org/10.1038/s41598-024-69319-1

www.nature.com/scientificreports

Novel cost‑effective method 
for forecasting COVID‑19 
and hospital occupancy using deep 
learning
Nabil I. Ajali‑Hernández * & Carlos M. Travieso‑González 

The emergence of the COVID-19 pandemic in 2019 and its rapid global spread put healthcare systems 
around the world to the test. This crisis created an unprecedented level of stress in hospitals, 
exacerbating the already complex task of healthcare management. As a result, it led to a tragic 
increase in mortality rates and highlighted the urgent need for advanced predictive tools to support 
decision-making. To address these critical challenges, this research aims to develop and implement a 
predictive system capable of predicting pandemic evolution with accuracy (in terms of Mean Absolute 
error (MAE), Root Mean Square Error (RMSE), R2, and Mean Absolute Percentage Error (MAPE)) and 
low computational and economic cost. It uses a set of interconnected Long Short Term-memory 
(LSTM) with double bidirectional LSTM (BiLSTM) layers together with a novel preprocessing based 
on future time windows. This model accurately predicts COVID-19 cases and hospital occupancy over 
long periods of time using only 40% of the set to train. This results in a long-term prediction where 
each day we can query the cases for the next three days with very little data. The data utilized in this 
analysis were obtained from the “Hospital Insular” in Gran Canaria, Spain. These data describe the 
spread of the coronavirus disease (COVID-19) from its initial emergence in 2020 until March 29, 2022. 
The results show an improvement in MAE (< 161), RMSE (< 405), and MAPE (> 0.20) compared to other 
studies with similar conditions. This would be a powerful tool for the healthcare system, providing 
valuable information to decision-makers, allowing them to anticipate and strategize for possible 
scenarios, ultimately improving public health outcomes and optimizing the allocation of healthcare 
and economic resources.
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The global pandemic of COVID-19 currently accumulates more than 770 million cases1. Although it seems under 
control, Coronaviruses are susceptible to genetic mutation, which can cause a high number of cases in a short 
period of time, putting pressure on hospitals and healthcare systems.

Figure 1 shows the historical number of cases of COVID-19. It can be seen how different peaks of COVID-19 
strains have rapidly reached high levels of weekly cases in very short periods. This situation could lead to a new 
global crisis like the one we experienced from 2020 to 2022.

Artificial Intelligence (AI) and all its branches, such as deep and machine learning algorithms, neural net-
works, and others, are being intensively explored for new healthcare applications in areas such as diagnostic 
imaging, lifestyle management, early detection of neurological and neurodegenerative diseases, risk analysis and 
monitoring, health information management, rehabilitation, and virtual healthcare. The expected benefits in 
these areas are broad and include optimization of diagnostics, monitoring, and control of disease progression, 
increased speed in imaging, greater understanding of predictive screening, and reduced costs and inefficiencies 
in healthcare2.

In this work, we focus on achieving a new methodology based on combining artificial intelligence algorithms 
related to time-series and attention layers to predict different daily caseload ranges. In this way, we hope that 
hospitals around the world will have access to a low-cost technology capable of predicting each day’s occupancy 
for the next three days. This gives them some leeway and reduces pressure and stress on the system.
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Related works
In the tough battle against the COVID-19 pandemic, the scientific community has joined forces in an unprec-
edented quest to forecast the trajectory of the pandemic. The arsenal of predictive models, empowered by the 
skills of AI, has played a critical role in providing insights, anticipating spikes, and guiding critical decisions. 
This has led the scientific and medical community to a favorable scenario, in a very short time, where AI models 
are part of every step of the planning and control of everything related to COVID-19 in hospitals. This section 
shows a selection of some of the most notable studies around the world that have successfully achieved a daily 
new case forecast or Covid case trend rigorously.

Nayet et al.3 provide in their work very valuable information about the artificial intelligence models applied 
in the field of COVID-19 prediction cases. As can be seen in Fig. 2, 52% of the works apply deep learning in their 
predictions, while the rest of the works focus on machine learning and other mathematical models. In addition, 
it can be seen in Fig. 3, how in deep learning applications, the most used are Convolutional Neural Networks 
(CNN) and Generative Adversarial Network (GAN). Being LSTM and BiLSTM a small part of the set.

Pontoh et al.4 conducted a study from March 2020 to April 2022 to decipher the impact of the pandemic 
on Jakarta. Using a Neural Network Autoregressive Model (NNAM), their goal was to identify the patterns of 
positive COVID-19 cases. The results showed a MAE of 302.02, a RMSE of 458.51, and an impressive R2 value 
of 0.941.

Figure 1.   Evolution of the different covid waves from 2020 to the present day1.

Figure 2.   Publication trends in ML, DL, and other techniques for COVID-19 prediction.

Figure 3.   DL techniques used for COVID-19 prediction.



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:25982  | https://doi.org/10.1038/s41598-024-69319-1

www.nature.com/scientificreports/

In an extensive study spanning from April 2020 to March 2023, Jin et al.5 explored the integration of Autore-
gressive Integrated Moving Average (ARIMA), LSTM, and Back Propagation Neural Network (BPNN) models to 
forecast COVID-19 trends in Japan and Germany. Their research aimed to provide insights into the pandemic’s 
future trajectory. The results were promising, revealing an MAE of 1249.83, an RMSE of 2478.28, and an MSE 
of 6,141,895.96. The results show such high values, probably due to the steep slope of the curves and the high 
gradients resulting from the high number of cases in the different pandemic waves.

On the other hand, Jin et al.6 proposed a comprehensive analysis in which they aimed to predict the course 
of the COVID-19 pandemic. For this purpose, they developed an AI model based on ARIMA-LSTM fusion. 
The duration of this work was from January 2021 to October 2022, covering the territories of China and India. 
Their efforts yielded promising results, with an MAE of 580.35, an RMSE of 863.08, an MSE of 744.90, and an 
impressive R2 value of 0.983.

Moving to the African continent, in the heart of Cameroon, Sandie et al.7 conducted a large study from 
March 2020 to May 2021, using a seasonal ARIMA model to uncover trends in COVID-19 infection cases. Their 
investigation provided valuable information, with an MAE of 11,156.77, an RMSE of 18,824.93, and a remarkable 
MAPE of 12.35. During these dates, in the United States, Zhou et al.8 also conducted an in-depth analysis from 
April 2020 to April 2021, leveraging an interpretable temporal attention network (ITANet) to make predictions 
of new confirmed COVID-19 cases. They obtained fairly good results with an MAE of 294.46, an RMSE of 392.49, 
and a MAPE of 0.1215.

On the other side of the world, in Malaysia, Singh et al.9 achieved quite acceptable predictions using local 
hospital data from 22 January to 1 May 2022. They used an ARIMA model that successfully predicted the number 
of daily cases. Their research revealed a MAPE of 16.01 and a p-value of 0.186.

Last but not least, from 15 February 2020 to 22 January 2022, Hssayeni et al.10, used LSTM for daily forecast-
ing of COVID-19 cases in the USA. Their pioneering work revealed an MAE of 596.66, an R2 value of 0.82, and 
a remarkable p-value of 0.0027.

These remarkable discoveries in the field of COVID-19 predictive modeling reflect the unwavering dedi-
cation of researchers around the world, who contribute substantially to our collective understanding of this 
unprecedented global challenge. MAE and RMSE values tend to show remarkable differences as explained in 
many studies, due to the steep slope that the contagion curves reached. A detailed summary of the related work 
section is shown in Table 1. It shows the model used in the study, the dates on which they were carried out, and 
the relevant results.

Our proposal
Building on previous research, we propose an innovative approach to improve the accuracy and efficiency of 
COVID-19 prediction models with a small number of training samples.

Our methodology introduces a novel perspective, emphasizing the use of an interconnected LSTM layer with 
a bidirectional double-layer BiLSTM as the main element of the architecture. This, together with an optimized 
architecture and a data preprocessing technique not used in previous work leads us to a model that breaks the cur-
rent limitations shown in the previous section (Figs. 2, 3, and Table 1) and improves on the current state of the art.

This approach consists of segmenting the data into temporal windows with labels of future cases. This facili-
tates predictive capabilities using daily historical COVID-19 cases as the only input. In addition, a reduction of 
the training set is achieved, requiring only 40% of the ensemble data to train, with good MAE, R2, and RMSE 
results. This implies that for the nature of the type of data being collected, only an interval of between 6 and 
12 months is needed to have a training set ready to deliver good results. The main objective of our proposal is to 
provide a reliable COVID-19 prediction method with low computational cost, efficient parameters, and the need 
for simple input. This improvement addresses the limitations observed in previous models, such as ARIMA and 
BPNN, by exploiting the full potential of the sequential learning capabilities of LSTM and BiLSTM.

In addition, the computational cost associated with our model is significantly lower than some existing 
approaches. Our method reduces the dependence on a large number of input parameters, making it less data-
intensive. Thus, its cost-effectiveness makes it accessible for use in a variety of environments and regions, ensuring 
its practical applicability.

Table 1.   Summary of related works and their conditions.

Study Dataset Architecture (layers) Estimated parameters

Pontoh et al.4 1 Mar 2020 to 3 Apr 2022. Jakarta Neural network autoregressive Positive cases

Pontoh et al.4 1 Mar 2020 to 3 Apr 2022. Jakarta LSTM Positive cases

Jin et al.5 1 Apr 2020 to 9 Mar 2023. Japan and Germany ARIMA-LSTM-BPNN COVID-19 prediction

Jin et al.6 1 Jan 2021 to 10 Oct 2022. China and India ARIMA-LSTM COVID-19 prediction

Sandie et al.7 5 Mar 2020 to 31 May 2021. Cameroon Seasonal ARIMA model Infection cases COVID-19

Zhou et al.8 1 Apr 2020 to 28 Apr 2021. USA Interpretable temporal attention network (ITANet) New confirmed cases

Singh et al.9 22 Jan to 1 May 2022. Malaysia ARIMA Forecasting daily cases

Hssayeni et al.10 15 Feb 2020 to 22 Jan 2022. USA LSTM Forecasting daily cases
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Material and methods
Dataset
In the field of professional science, our study focuses on the use of a regression model to predict COVID-19 
trends using data from the Hospital Insular de Gran Canaria (Spain). This dataset spans from the beginning 
of 2020 to March 29, 2022, and consists of only two inputs in the simplest case: date and daily new COVID-19 
cases. Despite the simplicity of this dataset, our analysis has demonstrated the exceptional ability of the model 
to accurately predict future COVID-19 trends, identifying temporal patterns, seasonality, and the impact of 
interventions. This work underscores the value of accessible data and demonstrates how even minimal data 
inputs can yield profound insights, revolutionizing the landscape of professional research and analysis in the 
field of science. As mentioned above, the database is owned by the Government of the Canary Islands (Spain) 
and the data is public11. It can be consulted or downloaded from https://​opend​ata.​sitcan.​es/​datas​et/​capac​idad-​
asist​encial-​covid-​19.

Performance indices
A set of statistical parameters has been used to evaluate the accuracy of the model. The selection of these 
parameters is based on their widespread use in the literature, which allows us to compare our results with the 
current state of the art. The most prominent are RMSE, MAE, MAPE, and R2, which measure the precision of 
the measurements, as well as their dispersion and correlation. Their mathematical expressions are shown in the 
following equations, where yi are the observed values, ŷi the predicted values and y the mean of these values 
respectively12–15.

Mean square error (MSE):

Root mean square error (RMSE):

Mean average error (MAE):

Mean square error (MAPE):

Coefficient of determination (R2):

Data preprocessing
To perform the data preprocessing and labeling, the “new daily cases” variable was separated into one vector 
and the date variable into another vector. Then, a labeling window with different values was used to assign a 
label to the “new daily cases” values. This label assigns the values of “Ytrain”. These “Ytrain” values depend on 
the size of the window. Thus, for a window n = 2, the “new daily cases” of date n = 1 and n = 2 would be grouped 
in the first row of the “Xtrain” vector and their “Ytrain” value would be that of the later date, i.e., n + 1. Next, 
considering a step = 1, the dates n = 2 and n = 3 would be grouped in the second row, and the value of “Ytrain” 
would be that of n = 4.

The study was carried out with values from n = 1 to n = 20 to check which window was better suited to the 
data and which could better handle the high slope presented by the COVID-19 waves. Figure 4 shows a scheme 
of the starting vectors “date” and “new daily cases” and the labeling process for a window n = 2 and n = 5. The 
dataset is available from the link provided in the previous section.

Network architecture
To correctly predict the COVID-19 data, an architecture has been designed that is capable of analyzing the time 
series and capturing the existing gradient differences in the slopes generated by the different waves through the 
use of deep learning. The different layers used in the whole architecture are described in detail below.
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LSTM‑BiLSTM
Long-Short Term Memory is a type of recurrent neural network (RNN) that is particularly useful for modeling 
sequential data. This type of algorithm has been applied to a wide range of tasks, including speech recognition, 
natural language processing, and time series forecasting16. By using memory cells, LSTMs can retain useful data 
from current or previous stages and use it in the future. Therefore, they use algorithmic gates that are also capable 
of retaining such information for future use and goal attainment.

They can also be combined to improve the overall network architecture. There are variants with different func-
tions, such as Bidirectional LSTMs (BiLSTMs), Gate Recurrent Units (GRUs), or the new algorithms focused on 
the attention layer, called "transformers", described by Vaswani et al. in 2017 in their work entitled "Attention is 
all you need"17. In the case of BiLSTMs, the only difference is the relationship between the states, since they are 
bidirectional and can take into account the data of the previous state as well as the following one.

The LSTM consists of a memory cell and three parts, which can be expressed mathematically as follows18:
Input Gate: the layer responsible for updating the state of the network through the sigmoidal function.

Wi is the representation of the weight of the input, bi is the corresponding bias, xt is the current time step, 
and ht−1 is the output of the previous time step. σ will have a value ∈ [0, 1], representing full discard or full save 
of the data, respectively16,18.

Forget Gate: the layer responsible for deciding whether to save or discard the information. It is the first step 
of LSTM.

Wf  is the weight representation of the input, bf  is the corresponding bias, xt is the current time step and ht−1 
is the output of the previous time step.

Output Gate: This is where the information output is determined. This output is based on the filtered ver-
sion of the cell state. The output value is determined by the sigmoid layer and then multiplied by the cell state18.

Wo is the weight representation of the input, bo is the corresponding bias, and xt is the current time step. ht−1 
is the output of the LSTM layer at the current time step. Finally, the previous cell state Ct−1 must be updated. 
This is computed by forgetting one input gate, as shown in Fig. 5.

where gt is the tanh layer.
In addition, the BiLSTM model is composed of two LSTM networks and is capable of reading input evalu-

ations in both directions, forward and backward. The forward LSTM processes information from left to right, 
while the backward LSTM processes information from right to left19.

(6)it = σ(Wi · [ht−1, xt]+ bi)

(7)ft = σ
(
Wf · [ht−1, xt]+ bf

)

(8)ot = σ(Wo · [ht−1, xt]+ bo)

(9)ht = ot · tan h(Ct)

(10)Ct = ft · Ct−1 + it · gt

Figure 4.   Scheme of the preprocessing and targeting process.
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Dense layer
A dense or fully connected layer, also known as a fully connected feedforward neural network, is a type of arti-
ficial neural network in which each neuron in one layer is connected to each neuron in the next layer. The basic 
formula for a fully connected neural network with a hidden layer and an output layer ( yfc ) can be represented 
as follows20:

where xi is the input vector to the network and Wi are the weight matrices for the connections between layers. b 
is the bias and f  , is the activation function applied to the output of each layer (sigmoid, ReLU, tanh).

It is important to note that this formula is for a single hidden layer neural network, but in practice, fully con-
nected neural networks usually have multiple hidden layers, in which case the formula would be more complex 
and would include additional weight matrices and bias vectors for each additional layer.

Dropout
Dropout is a regularization technique used in deep learning to avoid overfitting. It works by randomly “dropping” 
(i.e., setting to zero) a certain number of neurons during each training iteration. The mechanism of a dropout 
layer is quite simple: it is applied to the output of the previous layer and consists of multiplying the input vector 
by a mask. This mask is a binary mask that is randomly generated for each training iteration, it has the same 
shape as the input and each element is either 0 or 1. The probability that each element of the mask is 1 is called 
the dropout rate. The dropout rate is a hyperparameter that is usually set between 0.2 and 0.5, depending on the 
specific application and the complexity of the model. Typically, a low dropout rate is used for the input layer and 
a higher dropout rate is used for the hidden layers. During the testing phase, it is common to use a dropout rate 
of 0, which means that all neurons are active. This is because dropout is only applied during the training phase 
and is not used during the testing phase21.

Hyperparameters
The network was trained and tested using Python’s TensorFlow. The adaptive moment estimation or Adam 
method, which is a widely used optimization algorithm for neural network training, is used. Adam combines 
techniques from the RMSprop and Momentum optimizers to efficiently and effectively adjust the weights of a 
neural network during training. See Eqs. (12)–(14) below22,23:

where mt is the first updated moment (mean), vt is the second updated moment (variance), β1 and β2 are the 
moment decay parameters, gt is the gradient at the current step, α is the learning rate, “epsilon” (ϵ) is a small 
numerical constant to avoid division by zero, and θt is the current value of the parameter being updated. This is 
the parameter that the algorithm optimizes.

The values of these hyperparameters were 1·10–6 for “Epsilon” in the training options and 1·10–4 for the learn-
ing rate. The batch size was set to 5 and 15, with epochs equal to 1000 and a “shuffle” in each epoch. The value of 
β1 was set to 0.99, and β2 to 0.999. Training and testing are performed using the holdout method for regressions 
with a training percentage test of 40–60.

(11)yfc = f

(
n∑

i=1

(Wi ∗ xi)+ b

)

(12)mt = β1mt−1 + (1− β1)gt

(13)vt = β2vt−1 + (1− β2)g
2
t

(14)θt = θt−1 −
α

√
vt + ǫ

mt

Figure 5.   Representation of the components of a LSTM cell.
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Complete network architecture
The architecture developed in this work consists of the sequential input of the previously defined temporal win-
dows. This sequence passes through 3 levels. In the first one, there is an LSTM layer with 128 units in its hidden 
layer and with sequence return enabled. Then, in levels 2 and 3, there are 2 BiLSTM layers with sequence return 
enabled and 128 units each. Finally, at the output of this last level, a dense fully connected layer with 128 connec-
tions is implemented. Then, to reduce the randomness of the weights, a Dropout layer with a value of 0.4 and a 
Flatten layer are added to flatten the output sequence into a vector24. Finally, a dense layer with one neuron and 
linear activation is added to obtain the output. In Fig. 6, a scheme of the entire architecture is shown.

Results and discussion
Different strategies have been used in the design of this study. Then, the results are shown and we proceed to 
compare the different models used with their architectures. Also, a discussion about the chosen model is made 
and the best results obtained in the prediction of COVID-19 for this model are shown.

Temporal windows
To determine the number of windows to be used in the preprocessing, an analysis is performed under similar 
conditions, varying only the number of data to be grouped. A double LSTM with a 75–25 training-test set is 
used and the prediction error results are compared to obtain the optimal window. Table 2 shows the obtained 
results, where n is the size of the window.

Figure 6.   Scheme of the implemented network.

Table 2.   Comparison of the results of a classification by varying only the input window. Significant values are 
given in bold.

Parameters n = 3 n = 5 n = 8 n = 10 n = 15

MSE 762,778.11 862,210.50 481,293.11 608,270.42 1,287,370.01

RMSE 873.20 928.55 693.75 779.36 1134.15

MAE 570.57 653.51 334.34 530.25 819.42

R2 0.7202 0.6720 0.7967 0.7646 0.6147

MAPE 0.3392 0.3848 0.2834 0.3135 0.4752
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There is a clear tendency to obtain better results with an 8-sample window, i.e., a weekly period. This is 
because infections tend to vary from week to week, not from day to day, as demonstrated by Docherty et al.25.

Thus, the results of a week’s new cases are labeled together, as shown in Fig. 4. This gives the system a high 
degree of stability and allows fluctuations in the gradient of the curves to be captured.

LSTM layers
Once the optimal number in the window was obtained, the use of the proposed network consisting only of 
LSTMs was compared by varying the number of layers of the network. Table 3 shows the results of performing 
the classification using 1, 2, 3, and 4 LSTM layers in series. The 75–25 ratio is used because it is a common ratio 
in this type of work, and it provides an indicative point from which to begin the search for the optimum point3.

As can be seen in Table 3, as the number of LSTM layers increases, a lower error is obtained, the best case 
being 3 LSTM layers. However, after 3 layers there is no improvement, and the computational cost increases. 
Therefore, it was decided to add three LSTM layers and then continue with the training/testing ratio.

Other layers
The decision to use combinations of different LSTM layers instead of adding CNN or other layers is explained in 
“Related works”, Figs. 2 and 3, where it can be seen that CNN layers are the most widely used. To use a different 
type of approach and to differentiate ourselves from the majority of works, we decided to follow the aforemen-
tioned path where we focus on recurrent layers. Since the percentage of "other" layers has a rather insignificant 
value (7.54%), simulations were made with other types of architectures, see Table 4. The results show that these 
layers did not significantly improve the model and are therefore not included in our work. It would be interest-
ing to go further in the future with another work to study the influence of adding or modifying the layers of our 
architecture together with other types of layers such as transformers or other models.

Training and test set
A series of experiments are performed with the 3 LSTM layers, varying the train/test set to find the best ratio in 
the predictions. The results are shown in Table 5.

Table 3.   LSTM’s statistics in daily case prediction using 1, 2, 3, and 4 layers. Significant values are given in 
bold.

Parameters LSTM layer (75–25) LSTM 2 layers (75–25) LSTM 3 layers (75–25) LSTM 4 layers (75–25)

MSE 665,540.42 481,293.11 410,887.56 431,885.88

RMSE 815.14 693.75 641.00 338.81

MAE 556.00 334.34 330.82 330.82

R2 0.7642 0.7967 0.8264 0.8176

MAPE 0.3516 0.2834 0.2497 0.2589

Table 4.   Comparison of results using different types of architectures, n = 8.

Architecture LSTM and attention layer GRU​ Multi-layer perceptron (MLP) LSTM-attention-MLP

MSE 695,431.12  > 100,000 1,587,740.24 737,851

RMSE 833.93  > 100,000 1260.00 858.15

MAE 590.33  > 100,000 863.15 568.93

R2 0.7521 – 0.6541 0.7156

MAPE 0.3819 – 0.6045 0.4382

Table 5.   Comparison of different training/test sets for a 3-layer LSTM architecture. Significant values are 
given in bold.

Parameters

Training/test (%)

75–25 60–40 50–50 40–60 30–70 20–80

MSE 410,887.56 322,300.93 245,984.84 219,317.31 193,612.13 447,370.26

RMSE 641.00 567.71 495.96 468.31 440.01 668.85

MAE 330.82 269.86 211.31 205.32 176.86 254.00

R2 0.8264 0.8112 0.8313 0.8256 0.8259 0.5496

MAPE 0.2497 0.2549 0.2415 0.2498 0.2606 0.3635



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:25982  | https://doi.org/10.1038/s41598-024-69319-1

www.nature.com/scientificreports/

On the other hand, it is observed that after varying the train-test range from a percentage of 80–20% train-
test to 20–80% train-test, two relevant results are obtained. Both for the 40–60% train-test range and for the 
30–70% train-test range, the values are similar. While better MAE and RMSE values are obtained for the second 
set, a lower MAPE value is obtained for the first set. This means that the second system is better suited to abrupt 
changes in the curves than the first, and therefore can better capture the peaks in the COVID-19 waves, while 
on average the first case makes a smaller error in the prediction, being able to obtain better results in daily cases. 
Moreover, the value of R2, a parameter that is particularly important in regressions, is identical in both cases 
and equal to 0.82526. Therefore, it was decided to choose a train-test ratio of 40–60%, since it is more common 
to have a more compensated set when adding other layers or changing the architecture27.

LSTM vs BILSTM layers
After obtaining the appropriate number of layers and the optimal train-test set, we proceed to a final step. Then, 
taking into account the nature of the data and its time dependence, the idea of using BiLSTM algorithms is estab-
lished. The result is compared after adding or replacing different LSTM layers with BiLSTM. All possibilities of 
adding or replacing 1–3 LSTM and 1–3 BiLSTM are obtained. The results are shown in Table 6.

As can be seen in Table 6, the best performance is achieved by the LSTM with double BiLSTM. It achieves 
a lower value of MAE (161.80), RMSE (404.53), MAPE (0.19), and a better regression (0.87). Figure 7 shows 
a comparison of the 3 best performances of each set; the 1-LSTM-1BiLSTM, the 2-LSTM-2BiLSTM, and the 
1-LSTM-2-BiLSTM. The different metrics of these 3 sets are compared and the worst case is also used. These 4 
scenarios and their RMSE, MAE, r-squared and MAPE values are shown in Fig. 7.

The graphs are followed by Table 7 comparing our work with that mentioned in “Related work”.
It can be seen that this study covers a large data set and has the lowest MAE value compared to other studies 

related to the estimation of daily new cases of COVID-19. This low MAE indicates that, on average, the model 
predictions have a small magnitude of error compared to the actual cases. Each prediction tends to be closer 
to the actual value, suggesting that the model effectively captures trends and patterns in daily new cases of 
COVID-19.

On the other hand, this study has a lower RMSE than the other papers, except the paper by Zhou et al.8. Their 
performance is good, but they have a worse MAE and a much more limited database. Low RMSE values mean 
that the differences between the model predictions and the actual values are small and consistent. The RMSE, 
by penalizing larger errors, indicates that even cases where the model is wrong tend to be fairly close to reality.

In addition, the MAPE and R2 values of this work are quite acceptable considering the extent of the data and 
the shape of the curve, since they cover 2 years and 2 months of data, i.e., the 3 waves of COVID-19. Therefore, 
this work is hardly comparable with the other studies that have used MAPE as a parameter7–9, since they have 
data with a duration of only 1 year and are therefore less affected by the variations of the curves. Papers with an 
R2 higher than this study have higher values for RMSE and MAE too and although they perform well in cases 
where there is a rapid growth of new daily cases, they do not respond as favorably as this study. Therefore, tak-
ing into account that the objective is to determine the new cases of COVID-19 to avoid collapse and manage 
the healthcare system, the set of results of this study makes it a model that from very little data can give a very 
accurate prediction and has a high adaptability in case of large changes in trend.

Finally, in Table 8 the model prediction parameters are included for 3 days ahead, i.e., the next day (N + 1) 
and the two following days (N + 2 and N + 3).

Table 6.   Comparison of use of BiLSTM layers vs. LSTM layers. Significant values are given in bold.

Parameters 3 LSTM + 1 BiLSTM 3 LSTM + 2 BiLSTM 3 LSTM + 3 BiLSTM

MSE 164,677.98 227,299.50 221,403.32

RMSE 405.81 476.76 470.54

MAE 174.16 198.51 199.91

R2 0.8691 0.8193 0.8240

MAPE 0.2165 0.2194 0.2439

Parameters 2 LSTM + 1 BiLSTM 2 LSTM + 2 BiLSTM 2 LSTM + 3 BiLSTM

MSE 306,529.07 167,790.98 212,088.06

RMSE 553.65 409.62 460.53

MAE 218.83 180.41 191.667

R2 0.7563 0.8667 0.8314

MAPE 0.2351 0.2193 0.2177

Parameters 1 LSTM + 1 BiLSTM 1 LSTM + 2 BiLSTM 1 LSTM + 3 BiLSTM

MSE 194,284.38 163,647.00 175,088.22

RMSE 440.78 404.53 418.44

MAE 191.60 161.80 164.95

R2 0.8456 0.8712 0.8608

MAPE 0.2349 0.1930 0.2077
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The N + 1, N + 2, and N + 3 values predict future daily Covid cases. As can be seen, the errors increase as we 
move away from the prediction horizon. This is logical since each time we increase the value of N, the error 

Figure 7.   Model performance curves using RMSE, MAE, R2 and MAPE in different conditions.
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and uncertainty also increase. Specifically, the MSE and RMSE values increase by 18% and 9% respectively 
between the prediction of day N + 1 and the prediction of day N + 2. This relationship is somewhat respected 
when the prediction range is increased, since from prediction N + 2 to prediction N + 3, the MSE and RMSE 
error values increase by 19% and 10%, respectively. The increase from N + 1 to N + 3 is 50% and 23% for these 
values, respectively.

In the case of MAE, something similar happens, but the values from N + 1 to N + 2 increase by 17%, and 
then from N + 2 to N + 3 the value increases more slowly, by only 9%. The total difference in MAE from N + 1 
to N + 3 is 32%.

In the case of R2, the value loses correlation linearly, as it simply seems to lose a 3% correlation with each 
day it is increased.

Finally, the MAPE value is more affected by the change from N + 1 to N + 2 than from N + 2 to N + 3, the first 
increase in MAPE being 18% and the second only 6%.

All these values show that as the horizon of prediction gets further away, there are still competitive forecast 
values, but they lose consistency. Table 9 summarizes these data.

In addition, Fig. 8 is included, which shows the good performance of the model in its predictions with a 90% 
confidence interval.

Conclusions
In the context of daily COVID case prediction in a hospital, time and accuracy are key factors to avoid system 
saturation and optimally manage patient volume and occupancy.

In this study, a deep learning model based on the union of LSTM and BiLSTM layers was developed to predict 
the daily number of cases from a large database. This database, with a duration of more than two years of daily 
cases in a hospital in Spain, allows predictions with only 2 parameters as inputs. Being of low computational 
cost and easy access.

Table 7.   Comparison of COVID-19 forecasting metrics from previous studies vs the proposed study.

Study Architecture (layers) Metrics

Pontoh et al.4 Neural network autoregressive MAE = 302.02; RMSE = 458.51; R2 = 0.941

Pontoh et al.4 LSTM MAE  = 462.43;  RMSE  = 964.63;  R2 = 0.9334

Jin et al.5 ARIMA-LSTM-BPNN MAE  = 1249.83;  RMSE  = 2478.28; MSE = 6,141,895.96

Jin et al.6 ARIMA-LSTM MAE  = 580.35;  RMSE  = 863.08; MSE = 744.90;  R2 = 0.983

Sandie et al.7 Seasonal ARIMA model MAE  = 11,156.77;  RMSE  = 18,824.93; MAPE = 12.35

Zhou et al.8 Interpretable temporal attention network (ITANet) MAE  = 294.46;  RMSE  = 392.49;  MAPE  = 0.1215

Singh et al.9 ARIMA MAPE  = 16.01; p-value = 0.186

Hssayeni et al.10 LSTM MAE  = 596.66;  R2 = 0.82, p-value = 0.0027

This study 1-LSTM-2-BiLSTM MAE  = 161.80;  RMSE  = 404.53;  MAPE  = 0.1930;  R2 = 0.8712

Table 8.   Metrics for predicting daily COVID-19 cases for days N + 1, N + 2, and N + 3. Significant values are 
given in bold.

Parameters N + 1 N + 2 N + 3

MSE 163,647.00 198,511.32 246,272.67

RMSE 404.53 445.54 496.26

MAE 161.80 194.24 214.32

R2 0.8712 0.8422 0.8149

MAPE 0.1930 0.2355 0.2509

Table 9.   Metric changes between the statistical parameters of N + 1, N + 2 and N + 3.

Parameters N + 1 to N + 2 (%) N + 2 to N + 3 (%) N + 1 to N + 3 (%)

MSE 18 19 50

RMSE 9 10 23

MAE 17 9 32

R2 − 3 − 3 − 6

MAPE 18 6 30
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Figure 8.   Evolution of N + 1, N + 2, and N + 3 predictions of daily COVID-19 cases with a 90% confidence 
interval.
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The results show that the model is reliable and accurate in its predictions, since it achieves lower error values 
than similar works, with an MAE of 161 and an RMSE of 404. It also achieves good values of R2 (0.8712) and 
MAPE (0.193), which are justified by the size of the database, since it includes the 3 waves of COVID-19, unlike 
many previous studies. In addition, the model is proposed to be able to make predictions for the next 3 days 
with acceptable margins of error.

All of this can have several positive effects, including accurate forecasting that can help the hospital better 
plan and allocate resources such as beds, medical staff, and supplies to meet expected caseloads. With these 
accurate forecasts, administrators and healthcare professionals can make more informed decisions about treat-
ment strategies, preventive measures, and vaccine distribution.

In addition, the model’s performance allowed for rapid response to changes. Because the model performs well, 
it is more likely to detect changes in case trends quickly, allowing for an early and efficient response to potential 
increases in COVID-19 incidence.

Future lines of research include increasing the complexity of the model by adding additional layers, such as 
transformations, and including variables such as new discharges and health parameters.

Data availability
The link to the datasets analyzed during the current study can be found in Section “Dataset”, and is also available 
from the authors upon request.
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