Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/134830
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Surati, Shivangi | en_US |
dc.contributor.author | Trivedi, Himani | en_US |
dc.contributor.author | Shrimali, Bela | en_US |
dc.contributor.author | Bhatt, Chintan | en_US |
dc.contributor.author | Travieso González, Carlos Manuel | en_US |
dc.date.accessioned | 2024-11-26T15:38:27Z | - |
dc.date.available | 2024-11-26T15:38:27Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.issn | 2414-4088 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/134830 | - |
dc.description.abstract | With the widespread of Monkeypox and increase in the weekly reported number of cases, it is observed that this outbreak continues to put the human beings in risk. The early detection and reporting of this disease will help monitoring and controlling the spread of it and hence, supporting international coordination for the same. For this purpose, the aim of this paper is to classify three diseases viz. Monkeypox, Chikenpox and Measles based on provided image dataset using trained standalone DL models (InceptionV3, EfficientNet, VGG16) and Squeeze and Excitation Network (SENet) Attention model. The first step to implement this approach is to search, collect and aggregate (if require) verified existing dataset(s). To the best of our knowledge, this is the first paper which has proposed the use of SENet based attention models in the classification task of Monkeypox and also targets to aggregate two different datasets from distinct sources in order to improve the performance parameters. The unexplored SENet attention architecture is incorporated with the trunk branch of InceptionV3 (SENet+InceptionV3), EfficientNet (SENet+EfficientNet) and VGG16 (SENet+VGG16) and these architectures improve the accuracy of the Monkeypox classification task significantly. Comprehensive experiments on three datasets depict that the proposed work achieves considerably high results with regard to accuracy, precision, recall and F1-score and hence, improving the overall performance of classification. Thus, the proposed research work is advantageous in enhanced diagnosis and classification of Monkeypox that can be utilized further by healthcare experts and researchers to confront its outspread. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Multimodal Technologies and Interaction | en_US |
dc.source | Multimodal Technologies and Interaction [ISSN 2414-4088], v. 7, 75, (Julio 2023 | en_US |
dc.subject | 330413 Dispositivos de transmisión de datos | en_US |
dc.subject | 120320 Sistemas de control médico | en_US |
dc.subject.other | Attention models | en_US |
dc.subject.other | Convolutional Neural Networks | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Endemic | en_US |
dc.subject.other | Monkeypox Disease Classification | en_US |
dc.subject.other | Skin disease | en_US |
dc.title | An Enhanced Diagnosis of Monkeypox Disease Using Deep Learning and a Novel Attention Model Senet on Diversified Dataset | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/mti7080075 | en_US |
dc.identifier.scopus | 2-s2.0-85169059190 | - |
dc.contributor.orcid | 0000-0003-4381-5130 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | 0000-0002-0423-0159 | - |
dc.contributor.orcid | 0000-0002-4621-2768 | - |
dc.identifier.issue | 8 | - |
dc.relation.volume | 7 | en_US |
dc.investigacion | Ciencias de la Salud | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 17 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Julio 2023 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,544 | |
dc.description.sjrq | Q2 | |
dc.description.miaricds | 9,1 | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Colección: | Artículos |
Citas SCOPUSTM
8
actualizado el 30-mar-2025
Citas de WEB OF SCIENCETM
Citations
5
actualizado el 30-mar-2025
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.