Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134830
Campo DC Valoridioma
dc.contributor.authorSurati, Shivangien_US
dc.contributor.authorTrivedi, Himanien_US
dc.contributor.authorShrimali, Belaen_US
dc.contributor.authorBhatt, Chintanen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2024-11-26T15:38:27Z-
dc.date.available2024-11-26T15:38:27Z-
dc.date.issued2023en_US
dc.identifier.issn2414-4088en_US
dc.identifier.urihttp://hdl.handle.net/10553/134830-
dc.description.abstractWith the widespread of Monkeypox and increase in the weekly reported number of cases, it is observed that this outbreak continues to put the human beings in risk. The early detection and reporting of this disease will help monitoring and controlling the spread of it and hence, supporting international coordination for the same. For this purpose, the aim of this paper is to classify three diseases viz. Monkeypox, Chikenpox and Measles based on provided image dataset using trained standalone DL models (InceptionV3, EfficientNet, VGG16) and Squeeze and Excitation Network (SENet) Attention model. The first step to implement this approach is to search, collect and aggregate (if require) verified existing dataset(s). To the best of our knowledge, this is the first paper which has proposed the use of SENet based attention models in the classification task of Monkeypox and also targets to aggregate two different datasets from distinct sources in order to improve the performance parameters. The unexplored SENet attention architecture is incorporated with the trunk branch of InceptionV3 (SENet+InceptionV3), EfficientNet (SENet+EfficientNet) and VGG16 (SENet+VGG16) and these architectures improve the accuracy of the Monkeypox classification task significantly. Comprehensive experiments on three datasets depict that the proposed work achieves considerably high results with regard to accuracy, precision, recall and F1-score and hence, improving the overall performance of classification. Thus, the proposed research work is advantageous in enhanced diagnosis and classification of Monkeypox that can be utilized further by healthcare experts and researchers to confront its outspread.en_US
dc.languageengen_US
dc.relation.ispartofMultimodal Technologies and Interactionen_US
dc.sourceMultimodal Technologies and Interaction [ISSN 2414-4088], v. 7, 75, (Julio 2023en_US
dc.subject330413 Dispositivos de transmisión de datosen_US
dc.subject120320 Sistemas de control médicoen_US
dc.subject.otherAttention modelsen_US
dc.subject.otherConvolutional Neural Networksen_US
dc.subject.otherDeep learningen_US
dc.subject.otherEndemicen_US
dc.subject.otherMonkeypox Disease Classificationen_US
dc.subject.otherSkin diseaseen_US
dc.titleAn Enhanced Diagnosis of Monkeypox Disease Using Deep Learning and a Novel Attention Model Senet on Diversified Dataseten_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/mti7080075en_US
dc.identifier.scopus2-s2.0-85169059190-
dc.contributor.orcid0000-0003-4381-5130-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-0423-0159-
dc.contributor.orcid0000-0002-4621-2768-
dc.identifier.issue8-
dc.relation.volume7en_US
dc.investigacionCiencias de la Saluden_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages17en_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,544
dc.description.sjrqQ2
dc.description.miaricds9,1
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Adobe PDF (997,52 kB)
Vista resumida

Citas SCOPUSTM   

8
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

5
actualizado el 30-mar-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.