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Abstract: With the widespread of Monkeypox and increase in the weekly reported number of cases,
it is observed that this outbreak continues to put the human beings in risk. The early detection and
reporting of this disease will help monitoring and controlling the spread of it and hence, supporting
international coordination for the same. For this purpose, the aim of this paper is to classify three
diseases viz. Monkeypox, Chikenpox and Measles based on provided image dataset using trained
standalone DL models (InceptionV3, EfficientNet, VGG16) and Squeeze and Excitation Network
(SENet) Attention model. The first step to implement this approach is to search, collect and aggregate
(if require) verified existing dataset(s). To the best of our knowledge, this is the first paper which
has proposed the use of SENet based attention models in the classification task of Monkeypox
and also targets to aggregate two different datasets from distinct sources in order to improve the
performance parameters. The unexplored SENet attention architecture is incorporated with the
trunk branch of InceptionV3 (SENet+InceptionV3), EfficientNet (SENet+EfficientNet) and VGG16
(SENet+VGG16) and these architectures improve the accuracy of the Monkeypox classification task
significantly. Comprehensive experiments on three datasets depict that the proposed work achieves
considerably high results with regard to accuracy, precision, recall and F1-score and hence, improving
the overall performance of classification. Thus, the proposed research work is advantageous in
enhanced diagnosis and classification of Monkeypox that can be utilized further by healthcare experts
and researchers to confront its outspread.

Keywords: Monkeypox Disease Classification; deep learning; Convolutional Neural Networks;
endemic; skin disease; attention models

1. Introduction

The world has yet not fully recovered from the Coronavirus disease (COVID-19) and
one more infectious virus Monkeypox is spreading swiftly over the world. It is a zoonosis
disease originated by the Monkeypox virus that is a representative of the Orthopoxvirus
genus in the ancestry Poxviridae, with symptoms similar to smallpox. It was first detected in
the Democratic Republic of Congo and later on increasingly spread in urban areas of southern
Africa [1]. But, after May 2022, non-endemic countries viz. Spain, France, Germany, Europe,
and North America have reported Monkeypox cases. It is the first time that many clusters of
Monkeypox cases have been reported concurrently in geographically separated non-endemic
and endemic countries. Currently, studies are underway to identify the sources of infection,
way of transmission, and epidemiology [2,3].
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Symptoms of Monkeypox are skin lesions, rashes, fever, chill, and headache. Skin lesions
and rashes are the prime visible symptoms, caused by Monkeypox infection, often similar
to Chickenpox and Cowpox. The diagnosis of Monkeypox becomes difficult for healthcare
professionals/doctors due to (i) the visible and clinical similarity of the symptoms with the
existing diseases and (ii) Monkeypox infections in the human locality are new and rare [4].
The Polymerase Chain Reaction (PCR) test was observed/used as the most accurate tool for
the diagnosis of infection. However, doctors perform the diagnosis by visual observation of
the skin rashes and lesions. The severity and mortality rate of the Monkeypox disease is less
but not negligible. Occasionally, the faulty classification of the disease into Chickenpox or
Measles is done due to the similarity of symptoms. Moreover, the mortality rate during the
Monkeypox outbreak has traditionally varied from 1 percent to 10 percent. As per the report
(in 2022) of World Health Organization (WHO), there is an increase of about 2.8% in total cases
of Monkeypox, and as per their latest report (of March 2023), a total of 86,516 are confirmed
registered cases in over 113 countries [5]. Hence, by looking at the global importance of public
health, controlling the spread of the disease is mandatory. The early diagnosis of the disease
may help in tracing of spread and patient isolation [3].

Currently, there are many medical limitations in many rural and underdeveloped
countryside places around the globe. A lack of healthcare professionals and an improper
healthcare system may escalate the spread of such an infectious virus. Moreover, in
the existing medical system, there is a likelihood of incomplete and erroneous disease
reports and delays. In all such scenarios, Artificial Intelligence (AI), Machine Learning
(ML), and Deep Learning (DL) based techniques could help to detect the virus through
appropriate image processing and analysis. With the ongoing research in the field of
AI, many AI models are implemented for various virus detection, disease detection, and
health detection for humans, animals, and plants [6–10]. Particularly, DL -a subset of
ML, gained a lot of popularity in the field of medical science with image processing
due to their excellent learning capability [11]. Recurrent Neural Network (RNN) ([12]),
Convolutional Neural Network (CNN) ([13]), Denoising Auto Encoder (DAE) ([14]), Deep
Belief Networks (DBNs) ([15]), Long Short-Term Memory (LSTM) ([16]) are popular and
widely accepted for numerous applications. Among all, CNN is the most popular and
known DL architecture used for image processing applications [11]. Moreover, it plays a
vital role in computer vision applications like segmentation and localization, video, text
and speech recognition as well as analysis, and many more. It has three types of layers i)
convolutional layer, ii) pooling layer, and iii) fully connected layers [17,18]. Apart from
that, the core three facilities/functionality are sparse interaction, parameter sharing, and
equivariant representation. The most popular and commonly used CNN architectures
are ZFNet [19], GoogLeNet [20], VGG16 [21], AlexNet [22], ResNet [23], InceptionV3 [24],
Xception [25] and EfficientNet [26].

Thus, the current state-of-an-art for diagnosis & its classification of Monkeypox and
the other relevant diseases explore pre-trained DL models on the existing datasets [4,27–30].
On the other side, the attention mechanisms are also getting trained to allow the focus
on definite portion of the input [31]. The attempts are also made to create authenticated
image datasets from the existing resources (websites, newspapers, other articles) [28,32,33].
However, the existing literature suffers from the research gaps as follows:

• The research study and experimentation are carried out on a small and limited dataset
or on imbalanced dataset [27–30,34–36].

• Comparative analysis with the existing literature based on the pre-trained DL models
may not be discussed in detail [28–30].

• There is a possibility of improving accuracy by fine-tuning DL models with the
appropriate tuning of parameters [4,27,28,34,37,38].

• To the best of our knowledge, the attention model of Squeeze and Excitation Network
(SENet) is not yet explored for the classification of Monkeypox.
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Considering the limitations of the existing scenarios and the current state-of-an-art of
DL models, particularly for Monkeypox diagnosis and classification, the main contributions
in this paper are as follows:

• The images of skin diseases are classified as per the class labels based on three diseases
viz. Monkeypox, Measles, and Chickenpox.

• The size of dataset (number of images) required for the experimentation is increased
by aggregating individual existing datasets.

• The training of efficient DL models (InceptionV3, EfficientNet, VGG16) is improved
and evaluated as compared to the existing approaches.

• Not only that, a novel and unexplored DL attention model Squeeze and Excitation
Network (SENet) is explored and it is added to these trained architectures. To the best
of our knowledge, this is the first attempt of applying the attention model SENet to
classify multiple classes of skin diseases, specifically Monkeypox.

• Excessive improvement in the accuracy is achieved by exploring combination of SENet
with the improved trained models as compared to existing implemented models for
the same.

• The modified DL models are compared with the state-of-the-art architectures on this
aggregated and scaled dataset.

Thus, VGG16 [39], EfficientNet [26] and InceptionNet [24] models of CNN are explored
in this paper with the aim to detect and classify the Monkeypox disease efficiently. The
SE-block of an unexplored SENet architecture [40] is combined with these models that
achieves remarkable improvement in the accuracy of classification.

The remaining paper is organized as follows: Section 2 explores current state-of-the-art
for the defined problem, followed by an in-depth explanation of the methodology covering
the dataset, implementation details with DL models and learning parameters and results &
discussion in Section 3, while Section 4 summarizes overall study with the conclusion and
possible future research directions.

2. Related Work

As stated earlier, after COVID19, AI, ML and DL are proven successful in diagnosis
and severity categorization from the high quality images of medical field (chest X-ray
and chest ultrasound, Computed Tomography (CT)). Hence, the researchers and scientific
communities are motivated in applying AI, ML and DL approaches for the diagnosis or
classification of Monkeypox disease from the digital images of the infected patients’ skin.
However, the adequate amount of image datasets (clinically verified) are difficult to collect
due to the recent development of this disease. The existing literature on the Monkeypox
disease is also contemporary with the other related works in the similar fields.

The first verified Monkeypox dataset- the “Monkeypox Skin Lesion Dataset (MSLD)” is
introduced in [28] after collecting the images from news portals, websites, and case reports
available publicly. The pre-trained deep learning models viz. VGG-16, ResNet50, and
InceptionV3 and an ensemble approach are explored for binary classification of Monkeypox
and other diseases. A three-fold cross-validation experiments are carried out and for the
experimental setup, the original image dataset is divided into training set, validation set
and testing set (70:10:20 proportion). The highest accuracy of approximately 82.96% is
achieved with ResNet50 model and hence, it is utilized for the web-app that gives initial
analysis of Monkeypox from the uploaded image. However, the research can further be
extended for sufficient sizes of training and testing dataset to improve the accuracy.

The major existing research exploration focus on diagnosis of Monkeypox along with
the classification between different diseases. The automatic diagnosis of Monkeypox lesions
by means of machine learning and deep learning techniques is very useful for monitoring
and expeditious identification of suspected cases from the areas where confirmatory PCR
tests are not feasible. Based on that, the features of three deep CNN models (AlexNet,
GoogleNet and VGG16Net) are explored and analyzed with different ML classifiers to
diagnose Monkeypox disease in [29] using the “Monkeypox Skin Lesion Dataset (MSLD)”.
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Additionally, five ML algorithms viz. Support Vector Machine (SVM), k-Nearest Neighbors
(KNN), Decision Tree, Naive Bayes and Random Forest are used for classification. Aug-
mented images are used for the training purpose and real images are used for the testing
purpose. It is concluded that the highest accuracy of 91.11% is achieved by the Naive Bayes
classifier with VGG16Net features. However, they experimented with a small dataset that
needs to be explored on a large scale.

A modified VGG16 model to diagnose Monkeypox and for its classification with
others is proposed in [27]. The model is evaluated with two distinct studies. For this
purpose, the first important step towards the study of Monkeypox - digital image data
collection “Monkeypox 2022” is generated by collecting numerous images from different
open-sources (news, media, websites) and online portals under the tag commercial and
other licenses [32]. Initially, a modified VGG16 model (consisting of sixteen CNN layers,
having different size of filters and stride values) that has three necessary elements (pre-
trained architecture, an updated layer, a prediction class) is selected for experimentation.
The three hyper parameters viz. batch size, number of epochs and learning rate are
tuned for initial experimentation with an aim to enhance the performance of the proposed
model. In addition, their findings/results are validated through visual description of
post-image analysis using Local Interpretable Model-agnostic explanations (LIME). The
experimentation followed two studies- study one with original images and study two with
the augmented images of Monkeypox and others. They achieve accuracy of 83% with study
one, however, the accuracy is reduced to 78% in the second study using augmented images.
Also, the larger, updated and balanced dataset is required to be experimented with their
model to improve accuracy.

Another approach for classification of 5 diseases Monkeypox, Chickenpox, Smallpox,
Cowpox, and Measles is proposed in [4] with an aim to classify more diseases as compared to
three diseases considered in [27,28]. In addition, improved dataset is created and utilized in
this research work as compared to the earlier approaches. Not only that, seven DL models
viz. ResNet50, DenseNet121, Inception-V3, SqueezeNet, MnasNet-A1, MobileNet-V2, and
ShuffleNet-V2 are tested with 5-fold cross validation for the classification of images. The
ShuffleNet-V2 model attained the peak accuracy (79%). Thus, there is a scope of improvement
in this accuracy by utilizing DL models with appropriate tuning of parameters.

Next, a balanced dataset of Monkeypox, Healthy and Other Diseases-”Monkeypox Skin
Dataset” based on three parameters viz. classes, types and sizes of images is created in [33]. The
proposed work and created dataset are compared with the previous two datasets-”Monkeypox
2022” ([27]) and “Monkeypox Skin Lesion Dataset (MSLD)” ([28]) in terms of class labels and
balanced number of images per class. The CNN classifiers viz. VGG-16, VGG-19, ResNet50,
EfficientNet-B0, MobileNet-V2 and Ensemble classifiers (VGG-16+VGG-19+ResNet50, VGG-
16+ResNet50+EfficientNet-B0, ResNet50+EfficientNet-B0+MobileNet-V2) are evaluated with their
own balanced dataset and highest 95% accuracy is achieved through ResNet50 classifiers. Apart
from that, the accuracy is improved to 98.33% by an ensemble approach (ResNet50+EfficientNet-
B0+MobileNet-V2). However, the increased dataset size may further improve the accuracy.

Recently, the 5-fold cross validation experimental study with 13 pre-trained DL models
(VGG, ResNet, Inception-V3, InceptionResNet, Xception, MobileNet, DenseNet, Efficient-
Net, Ensemble approach (Xception and DenseNet-169)) to detect and classify four different
classes (Monkeypox, Chickenpox, Measles, Normal) is carried out in [30]. The experiments
are performed on well-known “Monkeypox 2022” dataset [27,32] and two models Xception
and DenseNet-169 are identified as best performing models from the 13 DL models. The
probability values from these two models are considered for the ensemble approach and
the accuracy is increased up to 87.13%. Grad-CAM and LIME are used for the visualization
of the same. Again, the performance could be improved with an addition of more data.
Also, the lightweight DL models are preferable for the memory-constrained environments
as compared to the pre-trained DL models.

A deep hybrid CNN model named as MonkeypoxHybridNet is proposed in [34] to
detect four different classes (Monkeypox, Chickenpox, Measles, Normal). The structure
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of this hybrid model combines three DL models ResNet50,VGG19, and InceptionV3. The
evaluation is carried out with popular “Monkeypox 2022” dataset [27,32] and images are
given parallel to all three models in first step. Next, flattened output of these models are
collected and fed to the dense layer and a dropout layer respectively for classification.
The experimental results show the highest accuracy of 84.2% obtained using the proposed
MonkeypoxHybridNet model.

The transfer-learning-based models (VGG19, DenseNet121, Xception, EfficientNetB3
and MobileNetV2) combined with the Convolutional Block Attention Module (CBAM)
attention model are presented in [37] to classify MonkeyPox with the other skin diseases.
The experiments are carried out on “Monkeypox Skin Lesion Dataset (MSLD)” [28]. The
highest accuracy achieved is 83.89% using Xception-CBAM-Dense model. Another research
work for classification of Monkeypox vs. non-Monkeypox images of dataset “Monkeypox
Skin Lesion Dataset (MSLD)” [28] based on pre-trained DL networks ResNet18, GoogleNet,
EfficientNetb0, NasnetMobile, ShuffleNet and MobileNetv2 is proposed in [38]. In addition,
mobile application to detect human Monkeypox is also developed to provide the prediction
results based on the best performing model MobileNetv2 (accuracy 91.11%) to the end users.

Detection of Monkeypox skin lesion and its classification is performed based on pre-
trained CNN models MobileNetV2, VGG16, and VGG19 in [35] using the Monkeypox Skin
Image Dataset. The highest performance is achieved using MobileNetV2, with 91.37%
accuracy, 90.5% precision, 86.75% recall and 88.25% F1 score. Another approach to classify
Monkeypox based on MiniGoogleNet architecture is proposed in [36] using “Monkeypox
Skin Lesion Dataset (MSLD)” [28] and the highest accuracy achieved is 97.08%.

Lastly, classification between Monkeypox and normal skin images is carried out in [41]
using ten CNN models VGG16, ResNet50, ResNet101, Xception, EfficientNetB0, Efficient-
NetB7, NasNetLarge, EfficientNetV2M, ResNet152V2, EfficientNetV2L. Two studies of
binary classification and third study for multiclass classification (Monkeypox, Chickenpox,
Measles, Normal) is explored with accuracy ranging from 84% to 99% using ResNet101.
In addition, the Generalization and Regularization Approaches (GRA) are implemented
to show computational efficiency of transfer learning models. The model’s prediction is
explained and validated through the LIME.

Apart from the above approaches, the improved Deep CNN models developed on
the Al-Biruni Earth Radius Optimization Algorithm and transfer learning for classification
of Monkeypox images are proposed in [42,43]. Similarly, DL based Monkeypox diagnosis
using another optimizer algorithm- Metaheuristic Harris Hawks is conducted in [44].

Thus, the existing research to classify Monkeypox based on trained DL models suffer
from the major limitation of smaller dataset. Hence, there is a scope of improvement in accu-
racy by retraining the DL models with an increased size of dataset. For this purpose, differ-
ent available datasets as shown in Table 1 are collected from the existing authors/resources.

The review of the existing literature based on the above discussion, DL architectures
used and the existing datasets is summarized in Table 2.

Table 1. The details of existing datasets.

Dataset No of Classes Class Labels NoI 1 NoCL1 2 NoCL2 3 NoCL3 4 NoCL4 5

“Monkeypox2022” [27]

Study one-2 1.Monkeypox,
2.Chickenpox 90 43 47 - -

Study two-2 1.Monkeypox, 2.Others 1754 587 1167 - -

“Monkeypox Skin Lesion Dataset (MSLD)” [28] 2 1.Monkeypox, 2.Others Original- 228
Augmented- 3192

Original- 102
Augmented- 1428

Original- 126
Augmented- 1764 - -

“Monkeypox Skin Images Dataset (MSID)” [45] 4
1.Monkeypox,

2.Chickenpox, 3.
Measles, 4. Normal

770 279 107 91 293

“Monkeypox Skin Dataset” [33] 3
1. Monkeypox, 2.

Healthy (Normal), 3.
Other skin diseases

300 100 100 100

1 NoI: Total no of Images; 2 NoCL1: No of Images for Class Label 1; 3 NoCL2: No of Images for Class Label 2; 4

NoCL3: No of Images for Class Label 3; 5 NoCL4: No of Images for Class Label 4.
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Table 2. The Review of Current State-of-the-art.

Existing
Work

Trained DL
Architectures Dataset Used Output/

Classification

Best Performance
Measure with Evaluation

Parameters
Analysis Tool

Additional
Contribu-

tion

Attention
Model

Applied?

[28]
VGG-16, ResNet50,

InceptionV3 and
ensemble

Self created-
“Monkeypox
Skin Lesion

Dataset (MSLD)”

Classification
between

Monkeypox and
other diseases

ResNet50- accuracy: 82.96
± 4.57%, Precision:
0.87 ± 0.07, Recall:

0.83 ± 0.02, F1-score: 0.84
± 0.03

- Self created dataset No

[29]

Three Deep CNN
models (AlexNet,
GoogleNet and

VGG16Net) with Five
Machine Learning
algorithms (SVM,

KNN, Decision Tree,
Naïve Bayes and
Random Forest)

“Monkeypox
Skin Lesion

Dataset
(MSLD)” [28]

Diagnosis of
Monkeypox

With VGG16Net features,
Naïve Bayes classifier-

accuracy: 91.11%"
- - No

[27] Modified VGG16

Self created
“Monkeypox
2022” dataset

[32]

Diagnosis of
Monkeypox

Modified VGG- Accuracy:
0.83 ± 0.085, Precision:

0.88 ± 0.072, Recall:
0.83 ± 0.085, F1-score:

0.83 ± 0.85 on test dataset

Local
Interpretable

Model-agonistic
Explanations

(LIME)

Newly
created dataset No

[4]

Seven DL models viz.
ResNet50,

DenseNet121,
Inception-V3,
SqueezeNet,
MnasNet-A1,

MobileNet-V2, and
ShuffleNet-V2 and
ensemble approach

Self created and
“Monkeypox
Skin Image

Dataset 2022”

Classification of
5 diseases

Monkeypox,
Chickenpox,

Smallpox,
Cowpox, and

Measles

Ensemble approach- Mean
precision:0.85, Mean recall:
0.61, Mean F1-score: 0.71,

Mean accuracy:0.83

- Self
created dataset No

[33]

VGG-16, VGG-19,
ResNet50,

EfficientNet-B0,
MobileNet-V2 and

Ensemble classifiers
(VGG-16+VGG-

19+ResNet,
VGG-

16+ResNet+EfficientNet,
ResNet+EfficientNet+MobileNet)

Self created
small balanced

dataset and
“Monkeypox
Skin Dataset”

Classification
between

Monkeypox,
Healthy and

Other Diseases

Individual- ResNet50-
Accuracy:95%, Specificity:

97.75%, Precision:95%,
Sensitivity: 95%, F1-score:
95% Ensemble (ResNet50+

EfficientNet-
B0+MobileNet-V2)-
Accuracy:98.33%,

Specificity: 99.17%,
Precision:98.33%,

Sensitivity: 98.33%,
F1-score: 98.33%

-

Self created
small

balanced
dataset and

multiple
ensemble approaches

No

[30]

13 pre-trained DL
models (VGG,

ResNet, Inception-V3,
InceptionResNet,

Xception, MobileNet,
DenseNet,

EfficientNet and
Ensemble approach

(Xception and
DenseNet-169))

”Monkeypox
2022”

dataset [32]

Classification
between four

different classes
-Monkeypox,
Chickenpox,

Measles, Normal

Individual-Xception-
Precision: 85.01%, Recall:
85.14%, F1-score: 85.02%,

and Accuracy: 86.51%
Ensemble (Xception, M2

DenseNet-169)- Precision:
85.44%, Recall: 85.47%,
F1-score: 85.40%, and

Accuracy: 87.13%

Gradient-
weighted Class

Activation
Mapping

(Grad-CAM) and
Local

Interpretable
Model-agonistic

Explanations
(LIME)

Multiple
ensemble approachesNo

[34]

Three DL models
ResNet50,VGG19,
InceptionV3 and

proposed Monkey-
poxHybridNet

“Monkeypox
2022”

dataset [32]

Detecttion of
four different

classes
-Monkeypox,
Chickenpox,

Measles, Normal

MonkeypoxHybridNet-
Accuracy: 0.842, Precision:

0.862, F1 score:0.842
-

Hybrid
model

based on
combination
of existing
DL models

No

[37]

Five DL models
VGG19, DenseNet121,

Xception,
EfficientNetB3 and

MobileNetV2
combined with
attention model

Convolutional Block
Attention Module

(CBAM)

“Monkeypox
Skin Lesion

Dataset
(MSLD)” [28]

Classification
between

Monkeypox and
other diseases

Xception-CBAM-Dense-
Accuracy: 83.89%,

Precision: 90.70%, Recall:
89.10%, F1-score:90.11%

-
Exploration
of attention

model CBAM
Yes, CBAM

[38]

Six DL models
ResNet18, GoogleNet,

EfficientNetb0,
NasnetMobile,
ShuffleNet and
MobileNetv2

“Monkeypox
Skin Lesion

Dataset
(MSLD)” [28]

Detection of
human

monkeypox skin
lesions

MobileNetv2-
Precision:0.90, Sensitivity:

0.90, F1-score: 0.90,
Accuracy: 91.11%

-

Development
of an

Android
mobile

application

No

[35]
Three CNN networks

MobileNetV2,
VGG16, and VGG19

“Monkeypox
Skin Image

Dataset”

Monkeypox skin
lesion detection

MobileNetV2- Accuracy:
91.37%, Precision: 90.50%,
Recall: 86.75%, F1-score:

88.25%

- - No
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Table 2. Cont.

Existing
Work

Trained DL
Architectures Dataset Used Output/

Classification

Best Performance
Measure with Evaluation

Parameters
Analysis Tool

Additional
Contribu-

tion

Attention
Model

Applied?

[36] DL architecture
MiniGoogleNet

”Monkeypox
Skin Lesion

Dataset
(MSLD)” [28]

Classification of
Monkeypox Accuracy: 0.9708 - - No

[41]

Ten CNN models
VGG16, ResNet50,

ResNet101, Xception,
EfficientNetB0,
EfficientNetB7,
NasNetLarge,

EfficientNetV2M,
ResNet152V2,

EfficientNetV2L

”Monkeypox
2022” dataset

[32] and
“Monkeypox
Skin Images

Dataset
(MSID)” [45]

Study
three-Detection
of four different

classes
-Monkeypox,
Chickenpox,

Measles, Normal

Study three-ResNet101-
Accuracy: 84% to 99%

Local
Interpretable

Model-agonistic
Explanations

(LIME)

Implementation
of General-

ization
and Regularization
Approaches (GRA)

No

The methodology and implementation details of the proposed work are discussed in
detail in next section.

3. Methodology

In order to explore the research work as described, various datasets (individual or com-
bined) used for training and testing purpose and implementation details using proposed
DL models are presented in this section.

3.1. Dataset

The datasets used for experimentation are collected from multiple different sources.
The details of the datasets used in this paper for experimentation are stated in Table 3. Here,
the dataset from [32] is termed as Dataset-1. This dataset consists of several manipulations
on original dataset such as conversion into gray scale, augmentation on original images and
grey scale images. Dataset source available in [45], here referred to as Dataset-2, is the second
unexplored and unutilized dataset used during training for the same classification task.

The third dataset utilized during training, is an aggregation of two individual datasets
from [28,32]. Dataset in [28] consists images for binary classification task of Monkeypox
skin lesions. Hence, the images of Monkeypox patients are collected from it and combined
with Dataset-1 to make a qualitative and quantitative dataset to improve the training by
deep learning models. The proposed aggregated dataset is named here as Dataset-3.

The images in Dataset-1, Dataset-2, Dataset-3 are having variable size of resolution.
Hence, the images of all 3 datasets are resized to 224x224 before feeding the dataset in
the DL architecture of EfficientNet, VGG16, SENet+EfficientNet and SENet+VGG16 for
training. While, the images are resized to 299x299 before passing it to training in the DL
model of InceptionV3 and SENet+InceptionV3.

Table 3. The details of datasets used in the proposed work.

Dataset
Labels Dataset Used No of Classes Class Labels NoI 1 NoMP 2 NoC 3 NoM 4

Dataset-1 “Monkeypox2022” [27] 3
1.Monkeypox,
2.Chickenpox,

3. Measles
871 186 325 360

Dataset-2
“Monkeypox Skin

Images Dataset
(MSID)” [45]

3
1.Monkeypox,
2.Chickenpox,

3. Measles
477 279 107 91

Dataset-3

“Monkeypox2022”
[27] + “Monkeypox
Skin Lesion Dataset

(MSLD)” [28]

3
1.Monkeypox,
2.Chickenpox,

3. Measles
975 290 325 360

1 NoI: Total no of Images; 2 NoMP: No of Images for Monkeypox; 3 NoC : No of Images for Chickenpox; 4 NoM :
No of Images for Measles.
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3.2. Implementation Details

The details of three DL models used (VGG16, InceptionV3 & EfficientNet) and atten-
tion model (Squeeze and Excitation Network), tuning of hyper parameters and evaluation
parameters followed by results and discussion are explored in this section.

3.2.1. Deep Learning Models

VGG16: The architecture proposed by [39] is having 16 layers emphasizing on in-
creasing the depth of the network. This architecture uses reduced size of receptive field
or the kernel size along with the smaller size of strides. Hence, this model is capable of
capturing local features also. As the architecture has high depth, the number of parameters
to be trained are large, thus increasing the computational cost. For the proposed work, fine
tuned of VGG16 model is used while removing the last layer and adding a fully connected
layer with 3 units in its architecture as shown in Figure 1.

Figure 1. VGG16 architecture [39].

InceptionV3: The main concept behind the architecture of InceptionV3 is to make
the network wider rather than making it deeper. This model achieves lesser number of
trainable parameters as compared to VGG16. This reduces the computation cost of the
model. The four parallel convolution layers with various kernel sizes that make up the
Inception network architecture are used to extract input image features at various scales
and then it is passed to the upcoming next layer. The architecture used here has 42 layers
in total. It uses Label Smoothing, Factorized 7 × 7 convolutions, and the inclusion of an
auxiliary classifier to convey label information to later part of the network, among other
advances (along with the use of batch normalisation for layers in the auxiliary learners) [24].
To explore the proposed work, this architecture is minutely modified by eliminating the
last layer and adding a new dense layer with 3 units at the end of the architecture. This
pretrained architecture (Figure 2) is implemented on the above discussed datasets.

Figure 2. InceptionV3 architecture [24].

EfficientNet: This architecture emphasizes on systematic scaling (also known as com-
pound scaling) along the width, depth and resolution dimensions by using predetermined
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scaling coefficients. With significantly less number of parameters and FLOPs, the model
leads to less computational cost. Here, the last layer of the model is modified by 3 softmax
units, targeting to find out the probability for each class label, as depicted in the Figure 3.
During experimentation of the proposed approaches, except the last 2 layers, all other
layers are freezed and pretrained weights are used for the same.

Figure 3. EfficientNet architecture [26].

Squeeze and Excitation Network (SENet): Input image is provided into a core trunk
CNN architecture which extracts the features. These feature maps are passed on through
Global Average Pooling (GAP) thereby shrinking the spatial dimensionality to one value
for every feature map. Fully connected layer is incorporated for the excitation of the
previously fetched features to capture the interrelationship among channels as shown in
Figure 4 [40]. With essentially low additional computational cost, Squeeze and Excitation
Network provides CNNs with a construction block that enhances channel interrelation [46].
To reduce the number of parameters, the traditional 3 × 3 filters were replaced with 1x1
filters. The architecture has the ability to adaptively adjust feature maps at various network
levels, enabling the model to concentrate on more relevant channel characteristics while
ignoring less significant ones [47].

Figure 4. SENet architecture with pre-trained models.

Hyper Parameters Tuning: The above discussed Deep architectures viz. VGG16,
EfficientNet, InceptionV3, SENet+VGG16, SENet+InceptionV3 and SENet+EfficientNet
are trained on the same hyperparameter settings. The learning rate used to train the
models is 0.0001(1.0000 × 10−4) along with the Adam Optimizer for optimizing the training
process. For deciding number of epochs, 2 callbacks are used to converge the model, namely
ReduceLROnPlateau and Early Stopping. Firstly, ReduceLROnPlateau callback is set with
patience = 20, factor to reduce the LR is set to 0.1 while monitoring validation loss of the
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Figure 5. Work flow of explored DL architectures.

model. Secondly, Early Stopping callback is set to monitor the validation accuracy with
patience = 20 to stop the training, if model is converged before specified number of epochs.

Thus, the complete work flow of explored deep learning architectures in this paper is
depicted in Figure 5.

3.2.2. Evaluation Parameters

The performance of the DL models on selected datasets (dataset-1, 2 and 3) is evaluated
by the parameters as follows:

1. Accuracy: The overall number of successfully identified instances across all cases. It
can be determined using Equation (1):

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(1)

2. Precision: The ratio of correctly classified positive samples (True Positive) to a total
number of classified positive samples (either correctly or incorrectly) (Equation (2)). It
helps us to visualize the reliability of the machine learning model in classifying the
model as positive.

Precision =
Tp

Tp + Fp
(2)

3. Recall: The ratio between the numbers of positive samples correctly classified as
positive to the total number of positive samples (Equation (3)). The recall measures
the model’s ability to detect positive samples.

Recall =
Tp

Tp + Fn
(3)
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4. F1 Score: The harmonic mean of precision and recall (Equation (4)). The maximum
possible F1 score is 1, which indicates perfect recall and precision.

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

where Tp = True Positive Tn = True Negative
Fp = False Positive Fn = False Negative

3.3. Results and Discussion

The experiments are carried out by training pre-trained InceptionV3, EfficientNet,
and fine tuned VGG16 models on the above stated datasets, viz. Dataset-1, Dataset-
2 and Dataset-3. In addition, these three models are combined with SENet attention
model (SENet+InceptionV3, SENet+EfficientNet, SENet-VGG16) and results are tested
on Dataset-3. The observations from the experimental results are discussed by comparison
between the DL models used in this work as well as collation of the results with the other
DL approaches in the existing literature.

3.3.1. Discussion and Observations in the Proposed Work

Discussion-1: The analysis of validation and test accuracy as well as validation and
test loss of each of the above discussed three models when implemented on the three
selected datasets in turn is highlighted in Table 4. Not only that, the comparison of test
accuracy fetched by the above discussed models, when implemented on the three datasets
individually, are depicted in graphs as shown in Figure 6a–c. Based on the experimental
results and plots, it is observed that:

• The InceptionV3 model proves to fetch better results in all three datasets as compared
to other two experimented models, viz. EfficientNet and VGG16 (Table 4).

• Also, it is depicted from the plots that InceptionV3 outperforms the other two deep
learning models in terms of accuracy.

(a) Dataset 1 (b) Dataset 2

(c) Dataset 3
Figure 6. Comparison of accuracy on different Datasets.
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Table 4. Comparative analysis of Accuracy and Loss of DL models.

LOSS ACCURACY
Name of Dataset Model

Validation Test Validation Test
Learning Rate Epochs

InceptionV3 0.89 0.82 0.9355 0.9682 0.01 45

EfficientNet 1.08 1.01 0.8925 0.9251 0.1 61Dataset 1

VGG16 0.91 0.85 0.8817 0.85714 0.01 56

InceptionV3 0.82 0.99 0.8889 0.9375 0.001 53

EfficientNet 1.5 1.11 0.873 0.8854 0.01 81Dataset 2

VGG16 0.82 1.12 0.8042 0.7708 0.1 43

InceptionV3 0.76 0.66 0.9756 0.976 0.01 56

EfficientNet 1.23 0.93 0.9533 0.948 0.0001 51

VGG16 1.2 1.26 0.9512 0.9599 0.1 59

SENet + InceptionV3 0.54 0.67 0.978 0.98 0.01 60

SENet + EfficientNet 0.77 0.766 0.959 0.976 0.1 65

Dataset 3

SENet + VGG16 0.82 0.9 0.9522 0.96 0.01 78

Discussion-2: Furthermore, the comparison of performance measures viz. Precision, Recall,
F-Score, and test accuracy of the discussed architectures on the selected datasets is shown in
Table 5. Based on the results achieved, it is observed that InceptionV3 solves the issue of
vanishing gradients upto certain extent in comparison to other two models. This is due to the
use of auxiliary classifiers other than the trunk classifier. In addition, the cost of computation
is also decreased as its architecture has less numbers of parameters to learn as compared to
VGG16 architecture. Therefore, InceptionV3 can be ensembled with the other DL models or can
be incorporated with attention models as per the observations depicted in Table 5.

Table 5. Comparative analysis of DL models based on evaluation parameters

Dataset Model Precision(%) Recall(%) F1-Score(%) Test Accuracy

Dataset 1

InceptionV3 73 75 74 96.82

EfficientNet 75 78 76 92.51

VGG16 70 69 70 85.71

Dataset 2

InceptionV3 72 70 69 93.75

EfficientNet 72 69 70 88.54

VGG16 67 68 67 77.08

Dataset 3

InceptionV3 80 81 79 97.6

EfficientNet 78 76 74 94.8

VGG16 72 70 69 95.99

SENet+InceptionV3 98.06 97.97 98.02 98

SENet+EfficientNet 97.59 97.59 98 97.6

SENet+VGG16 96.01 96 96 96

3.3.2. Comparative Analysis with the Existing Approaches

Discussion-3: The experimental results of the proposed work on the popular Dataset-1
(“Monkeypox 2022” [27,32]) are analyzed and compared with the experimental results on
the same dataset applied in the existing approaches [27,30,34] as shown in Table 6. From
the results, it is observed that as compared to the results fetched in [27], there is a rise
in test accuracy of about 13.82%, 9.51% and 2.71% using InceptionV3, EfficientNet, and
VGG16 models respectively on the same Dataset-1. Further observation is the accuracy
achieved using the DL models implemented in this paper, viz. InceptionV3, EfficientNet
and VGG16, as compared to the same DL models applied in [30]. In [30], the test accuracy
of 84.53%, 83.96% and 82.22% are achieved using these models respectively, whereas the
test accuracy in the proposed work on the same models are 96.82%, 92.51% and 85.71%
respectively. Thus, there is an approximate rise of 12%, 8.55% and 3% in the test accuracy
of InceptionV3, EfficientNet and VGG16 models respectively in the proposed work as
compared to [30]. Lastly, the InceptionV3 model in the proposed work has an approximate
rise of 16% in the test accuracy as compared to the same model experimented in [34].
Hence, the discussed work here achieved better results in terms of accuracy while using
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InceptionV3 and EfficientNet as a standalone deep architectures on the well-known dataset
“Monkeypox 2022” presented here as Dataset-1.

Table 6. Comparative analysis of accuracy achieved in popular Dataset-1.

Work Comparative Model as
Selected in Proposed Work Test Accuracy Achieved (%) Best Performing Model Test Accuracy Achieved (%)

[27] Modified VGG16
Study-1:83

- -
Study-2: 78

[30]

InceptionV3 84.53

Ensemble approach 87.13EfficientNet-B0 83.96

VGG16 82.22

[34]

ResNet50 59.5

MonkeypoxHybridNet 87.13
VGG19 70.5

InceptionV3 80.5

MonkeypoxHybridNet 84.2

Proposed work

InceptionV3 96.82

InceptionV3 96.82EfficientNet 92.51

VGG16 85.71

Discussion-4: For the said classification problem, all three models trained on larger
Dataset-3 especially InceptionV3, show a hike in the performance. To observe the same, the
test accuracy of the best performing models in the existing literature and in the proposed
work is compared and discussed as shown in Table 7. It is observed that the InceptionV3
model in the proposed work outperforms all the existing DL models with test accuracy
97.6% when used as a standalone architecture. Not only that, it outperforms the existing
ensemble approaches also even though selected as a standalone trained DL model. Hence,
InceptionV3 is proven to be the best trained DL model not only for Dataset-3, but also
for the other selected datasets (Dataset-1 and Dataset-2) in the proposed work. Further,
based on the accuracy achieved for all three DL models (Table 4), quantitative Dataset-3
is proven to be qualitative dataset for classifying the 3 diseases viz. Monkeypox, Measles,
and Chickenpox.

Table 7. Comparative analysis with best performing models in the existing literature.

Work Dataset Used Class Labels Best Performing Model Test Accuracy
Achieved (%)

[28] “Monkeypox Skin Lesion Dataset
(MSLD)”(Own) Monkeypox, Others ResNet50 82.96

[29] “Monkeypox Skin Lesion Dataset
(MSLD)” [28] Monkeypox, Others Naive Bayes classifier with

VGG16Net features 91.11

[27] “Monkeypox 2022” (Own)
Study one-Monkeypox, Chickenpox VGG16 83

Study Two- Monkeypox, Others VGG16 78

[4] Own
Monkeypox, Chickenpox, Smallpox,
Cowpox, Measles, Healthy

Standalone-ShuffleNet-V2 79

Ensemble approach 83

[33] “Monkeypox Skin Dataset” (Own) Monkeypox, Healthy, others
Standalone-ResNet50 95

Ensemble approach 98

[30] “Monkeypox 2022” [27]
Monkeypox, Chickenpox, Measles,
Normal

Standalone-Xception 86.51

Ensemble approach 87.13

[34] “Monkeypox 2022” [27] Monkeypox, Chickenpox, Measles,
Normal

Monkeypox-
HybridNet 84.2

[37] “Monkeypox Skin Lesion Dataset
(MSLD)” [28] Monkeypox, Others Xception-CBAM-Dense 83.89

[38] “Monkeypox Skin Lesion Dataset
(MSLD)” [28] Monkeypox skin lesions, Others MobileNetv2 91.11

[35] “Monkeypox Skin Image Dataset” Monkeypox skin lesions, Others MobileNetv2 91.37

[36] “Monkeypox Skin Lesion Dataset
(MSLD)” [28] Monkeypox, Others MiniGoogleNet 97.08

[41]
“Monkeypox 2022” dataset [32] and
“Monkeypox Skin Images Dataset
(MSID)” [45]

Study Three-Monkeypox, Chickenpox,
Measles, Normal Study three-ResNet101 84 to 99

Proposed
Work

Dataset-3 (“Monkeypox 2022” [27] +
“Monkeypox Skin Lesion Dataset
(MSLD)” [28]) Monkeypox, Chickenpox, Measles

Standalone-InceptionV3 97.6

Attention Model 98
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Discussion-5: As per the comparative analysis of results shown in Table 5, Squeeze
and Excitation Network attention module gives better performance along with the trunk
modules viz. InceptionV3, EfficientNet and VGG16 as compared to the respective stan-
dalone DL architectures. The confusion matrix for attention models viz. SENet+InceptionV3,
SENet+EfficientNet and SENet+VGG16 is depicted in Figure 7a–c respectively. It can be
clearly seen with the hike in the performance measures of all 3 discussed architectures of
DL with SENet amalgamation, that SENet attention surely outperforms other individual
deep learning architectures, when implemented on Dataset-3. Not only the results derived
from discussion 1 & discussion 4 stats InceptionV3 as the best performing model, but Incep-
tionV3 also fetches the peak accuracy of 98% when used as a trunk branch incorporation
with attention of SENet block on the top of it.

The comparison of accuracies attained by SENet+InceptionV3, SENet+EfficientNet and
SENet+VGG16 can be seen in Figure 8. Individual DL architecture of InceptionV3, Efficient-
Net and VGG16 attained the accuracy of 97.6%, 94.8% & 95.99% while SENet+InceptionV3,
SENet+EfficientNet and SENet+VGG16 manages to achieve the accuracy of 98%, 97.6% &
96% respectively, hence, making the statistics of accuracy better. The attention module on
top of above mentioned three DL models, succeeds to reach improved level of precision,
recall and F1-Score with an approximate average hike of 20% as compared to individual
models. Moreover, the attention architecture implemented in this research work performs
better than ensemble technique in [30] by the increase in accuracy of about 11%. Also, the
proposed technique (SENet+InceptionV3) succeeds to match the accuracy of 98% achieved
by ensemble technique in the paper [33]. Hence, overall it can be observed that attention
model do have significant results alike ensemble technique.

(a) SENet+InceptionV3 (b) SENet+EffcientNet

(c) SENet+VGG16
Figure 7. Confusion matrix of results obtained from SENet attention model.
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Figure 8. Comparison of three SENet architectures on Dataset-3.

4. Conclusions

The aim of this paper is to classify the three diseases viz. Monkeypox, Chickenpox and
Measles from the given input image. To achieve the same, experiments on three datasets are
carried out in order to fetch the generalized results. From the experiments and results, first
conclusion is that InceptionV3 deep architecture gives better and considerably significant
accuracy (96.82%, 93.75% and 97.6% for Dataset-1, Dataset-2 and Dataset-3 respectively) for
this classification problem when compared with EfficientNet (92.51%, 88.54% and 94.8% for
the respective datasets) and VGG16 (85.71%, 77.08% and 95.99% for the respective datasets)
models. The results of the other evaluation parameters (precision, recall and F1-score)
also support this observation. Next, the trained DL models in this work outperform on
popular “Monkeypox 2022” dataset (selected as Dataset-1 here) as compared to the other
approaches utilizing the same dataset. Lastly, the best performing DL model- InceptionV3
in the proposed work remarkably enhances the test accuracy (97.6%) of this classification as
compared to the other approaches explored in the current state-of-the-art. Furthermore, the
classification of Monkeypox and the other diseases is carried out on the aggregated dataset
collected from two different sources (Dataset-3) and it is concluded that this quantitative
dataset helps in enhancing the overall accuracy.

In addition to it, implementation results of an attention model, Squeeze and Excitation
Network along with InceptionV3 architecture as base model outperforms all state of art DL
models discussed in this paper. Not only that, SENet+InceptionV3 peaks the accuracy of
98% as compared to SENet+EfficientNet & SENet+VGG16 which achieved the accuracy of
97.6% & 96% respectively. It also succeeds to achieve the precision, recall and F1-score of
98.06%, 97.97% and 98.02%, higher than achieved by SENet+EfficientNet & SENet+VGG16
as well as the ensemble approaches proposed in the current state-of-the-art. Further,
various deep learning architecture with attention modelss and ensemble models for this
classification problem can be explored in future. Secondly, there is still a lack of sufficient
dataset. Therefore, several other augmentation techniques can be explored to elevate the
size of dataset, till new datasets in this field are generated.
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