Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/134588
DC FieldValueLanguage
dc.contributor.authorMendonça, Fábioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorFreitas, Diogoen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo García, Antonio Gabrielen_US
dc.date.accessioned2024-10-30T19:20:25Z-
dc.date.available2024-10-30T19:20:25Z-
dc.date.issued2022en_US
dc.identifier.issn1099-4300en_US
dc.identifier.urihttp://hdl.handle.net/10553/134588-
dc.description.abstractMethodologies for automatic non-rapid eye movement and cyclic alternating pattern analysis were proposed to examine the signal from one electroencephalogram monopolar derivation for the A phase, cyclic alternating pattern cycles, and cyclic alternating pattern rate assessments. A population composed of subjects free of neurological disorders and subjects diagnosed with sleep-disordered breathing was studied. Parallel classifications were performed for non-rapid eye movement and A phase estimations, examining a one-dimension convolutional neural network (fed with the electroencephalogram signal), a long short-term memory (fed with the electroencephalogram signal or with proposed features), and a feed-forward neural network (fed with proposed features), along with a finite state machine for the cyclic alternating pattern cycle scoring. Two hyper-parameter tuning algorithms were developed to optimize the classifiers. The model with long short-term memory fed with proposed features was found to be the best, with accuracy and area under the receiver operating characteristic curve of 83% and 0.88, respectively, for the A phase classification, while for the non-rapid eye movement estimation, the results were 88% and 0.95, respectively. The cyclic alternating pattern cycle classification accuracy was 79% for the same model, while the cyclic alternating pattern rate percentage error was 22%.en_US
dc.languageengen_US
dc.relation.ispartofEntropyen_US
dc.sourceEntropy [ISSN 1099-4300], v. 24 (5), 688, (Mayo 2022)en_US
dc.subject3311 tecnología de la instrumentaciónen_US
dc.subject.other1D-CNNen_US
dc.subject.otherANNen_US
dc.subject.otherCAPen_US
dc.subject.otherHOSAen_US
dc.subject.otherLSTMen_US
dc.titleHeuristic Optimization ofDeep and Shallow Classifiers: An Application for Electroencephalogram Cyclic Alternating Pattern Detectionen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/e24050688en_US
dc.identifier.scopus2-s2.0-85130591808-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue5-
dc.relation.volume24en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages24en_US
dc.utils.revisionen_US
dc.date.coverdateMayo 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,541
dc.description.jcr2,7
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,8
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Artículos
Adobe PDF (2,39 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.