Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/134588
DC FieldValueLanguage
dc.contributor.authorMendonça, Fábioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorFreitas, Diogoen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo García, Antonio Gabrielen_US
dc.date.accessioned2024-10-30T19:20:25Z-
dc.date.available2024-10-30T19:20:25Z-
dc.date.issued2022en_US
dc.identifier.issn1099-4300en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/134588-
dc.description.abstractMethodologies for automatic non-rapid eye movement and cyclic alternating pattern analysis were proposed to examine the signal from one electroencephalogram monopolar derivation for the A phase, cyclic alternating pattern cycles, and cyclic alternating pattern rate assessments. A population composed of subjects free of neurological disorders and subjects diagnosed with sleep-disordered breathing was studied. Parallel classifications were performed for non-rapid eye movement and A phase estimations, examining a one-dimension convolutional neural network (fed with the electroencephalogram signal), a long short-term memory (fed with the electroencephalogram signal or with proposed features), and a feed-forward neural network (fed with proposed features), along with a finite state machine for the cyclic alternating pattern cycle scoring. Two hyper-parameter tuning algorithms were developed to optimize the classifiers. The model with long short-term memory fed with proposed features was found to be the best, with accuracy and area under the receiver operating characteristic curve of 83% and 0.88, respectively, for the A phase classification, while for the non-rapid eye movement estimation, the results were 88% and 0.95, respectively. The cyclic alternating pattern cycle classification accuracy was 79% for the same model, while the cyclic alternating pattern rate percentage error was 22%.en_US
dc.languageengen_US
dc.relation.ispartofEntropyen_US
dc.sourceEntropy [ISSN 1099-4300], v. 24 (5), 688, (Mayo 2022)en_US
dc.subject3311 tecnología de la instrumentaciónen_US
dc.subject.other1D-CNNen_US
dc.subject.otherANNen_US
dc.subject.otherCAPen_US
dc.subject.otherHOSAen_US
dc.subject.otherLSTMen_US
dc.titleHeuristic Optimization ofDeep and Shallow Classifiers: An Application for Electroencephalogram Cyclic Alternating Pattern Detectionen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/e24050688en_US
dc.identifier.scopus2-s2.0-85130591808-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue5-
dc.relation.volume24en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages24en_US
dc.utils.revisionen_US
dc.date.coverdateMayo 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,541
dc.description.jcr2,7
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,8
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Artículos
Adobe PDF (2,39 MB)
Show simple item record

SCOPUSTM   
Citations

2
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

2
checked on Mar 30, 2025

Page view(s)

55
checked on Jan 11, 2025

Download(s)

21
checked on Jan 11, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.