Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/134588
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mendonça, Fábio | en_US |
dc.contributor.author | Mostafa, Sheikh Shanawaz | en_US |
dc.contributor.author | Freitas, Diogo | en_US |
dc.contributor.author | Morgado-Dias, Fernando | en_US |
dc.contributor.author | Ravelo García, Antonio Gabriel | en_US |
dc.date.accessioned | 2024-10-30T19:20:25Z | - |
dc.date.available | 2024-10-30T19:20:25Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.issn | 1099-4300 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/134588 | - |
dc.description.abstract | Methodologies for automatic non-rapid eye movement and cyclic alternating pattern analysis were proposed to examine the signal from one electroencephalogram monopolar derivation for the A phase, cyclic alternating pattern cycles, and cyclic alternating pattern rate assessments. A population composed of subjects free of neurological disorders and subjects diagnosed with sleep-disordered breathing was studied. Parallel classifications were performed for non-rapid eye movement and A phase estimations, examining a one-dimension convolutional neural network (fed with the electroencephalogram signal), a long short-term memory (fed with the electroencephalogram signal or with proposed features), and a feed-forward neural network (fed with proposed features), along with a finite state machine for the cyclic alternating pattern cycle scoring. Two hyper-parameter tuning algorithms were developed to optimize the classifiers. The model with long short-term memory fed with proposed features was found to be the best, with accuracy and area under the receiver operating characteristic curve of 83% and 0.88, respectively, for the A phase classification, while for the non-rapid eye movement estimation, the results were 88% and 0.95, respectively. The cyclic alternating pattern cycle classification accuracy was 79% for the same model, while the cyclic alternating pattern rate percentage error was 22%. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Entropy | en_US |
dc.source | Entropy [ISSN 1099-4300], v. 24 (5), 688, (Mayo 2022) | en_US |
dc.subject | 3311 tecnología de la instrumentación | en_US |
dc.subject.other | 1D-CNN | en_US |
dc.subject.other | ANN | en_US |
dc.subject.other | CAP | en_US |
dc.subject.other | HOSA | en_US |
dc.subject.other | LSTM | en_US |
dc.title | Heuristic Optimization ofDeep and Shallow Classifiers: An Application for Electroencephalogram Cyclic Alternating Pattern Detection | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/e24050688 | en_US |
dc.identifier.scopus | 2-s2.0-85130591808 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 5 | - |
dc.relation.volume | 24 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 24 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Mayo 2022 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,541 | |
dc.description.jcr | 2,7 | |
dc.description.sjrq | Q2 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,8 | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.