Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134587
Título: Statistical inference for a general family of modified exponentiated distributions
Autores/as: Gómez Déniz, Emilio 
Iriarte, Yuri A.
Gómez, Yolanda M.
Barranco-Chamorro, Inmaculada
Gómez, Héctor W.
Clasificación UNESCO: 1209 Estadística
Palabras clave: Exponentiated distributions
Generalized exponential
Likelihood
Stochastic orders
Fecha de publicación: 2021
Publicación seriada: Mathematics 
Resumen: In this paper, a modified exponentiated family of distributions is introduced. The new model was built from a continuous parent cumulative distribution function and depends on a shape parameter. Its most relevant characteristics have been obtained: the probability density function, quantile function, moments, stochastic ordering, Poisson mixture with our proposal as the mixing distribution, order statistics, tail behavior and estimates of parameters. We highlight the particular model based on the classical exponential distribution, which is an alternative to the exponentiated exponential, gamma and Weibull. A simulation study and a real application are presented. It is shown that the proposed family of distributions is of interest to applied areas, such as economics, reliability and finances.
URI: http://hdl.handle.net/10553/134587
ISSN: 2227-7390
DOI: 10.3390/math9233069
Fuente: Mathematics [ISSN 2227-7390], v. 9 (23), 3069, (Noviembre 2021)
Colección:Artículos
Adobe PDF (382,08 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.