Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/134483
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cabrera-Leon, Ylermi | en_US |
dc.contributor.author | Fernández-López, Pablo | en_US |
dc.contributor.author | Garcia Baez, Patricio | en_US |
dc.contributor.author | Kluwak, Konrad | en_US |
dc.contributor.author | Navarro Mesa, Juan Luis | en_US |
dc.contributor.author | Suárez-Araujo, Carmen Paz | en_US |
dc.date.accessioned | 2024-10-21T14:55:28Z | - |
dc.date.available | 2024-10-21T14:55:28Z | - |
dc.date.issued | 2024 | en_US |
dc.identifier.issn | 2055-2076 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/134483 | - |
dc.description.abstract | Objective The proportion of older people will soon include nearly a quarter of the world population. This leads to an increased prevalence of non-communicable diseases such as Alzheimer's disease (AD), a progressive neurodegenerative disorder and the most common dementia. mild cognitive impairment (MCI) can be considered its prodromal stage. The early diagnosis of AD is a huge issue. We face it by solving these classification tasks: MCI-AD and cognitively normal (CN)-MCI-AD.Methods An intelligent computing system has been developed and implemented to face both challenges. A non-neural preprocessing module was followed by a processing one based on a hybrid and ontogenetic neural architecture, the modular hybrid growing neural gas (MyGNG). The MyGNG is hierarchically organized, with a growing neural gas (GNG) for clustering followed by a perceptron for labeling. For each task, 495 and 819 patients from the Alzheimer's disease neuroimaging initiative (ADNI) database were used, respectively, each with 211 characteristics.Results Encouraging results have been obtained in the MCI-AD classification task, reaching values of area under the curve (AUC) of 0.96 and sensitivity of 0.91, whereas 0.86 and 0.9 in CN-MCI-AD. Furthermore, a comparative study with popular machine learning (ML) models was also performed for each of these tasks.Conclusions The MyGNG proved to be a better computational solution than the other ML methods analyzed. Also, it had a similar performance to other deep learning schemes with neuroimaging. Our findings suggest that our proposal may be an interesting computing solution for the early diagnosis of AD. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Digital Health | en_US |
dc.source | Digital Health [ISSN 2055-2076], v. 10, p. 1-6, (2024) | en_US |
dc.subject | 33 Ciencias tecnológicas | en_US |
dc.subject.other | Mild Cognitive Impairment | en_US |
dc.subject.other | Mini-Mental-State | en_US |
dc.subject.other | Dementia | en_US |
dc.subject.other | Criteria | en_US |
dc.subject.other | Classification | en_US |
dc.subject.other | Metaanalysis | en_US |
dc.subject.other | Robust | en_US |
dc.subject.other | Alzheimer'S Disease | en_US |
dc.subject.other | Artificial Neural Network | en_US |
dc.subject.other | Computer-Aided Diagnosis | en_US |
dc.subject.other | Mild Cognitive Impairment | en_US |
dc.subject.other | Machine Learning | en_US |
dc.title | Toward an intelligent computing system for the early diagnosis of Alzheimer's disease based on the modular hybrid growing neural gas | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1177/20552076241284349 | en_US |
dc.identifier.isi | 001328772400001 | - |
dc.description.lastpage | 16 | en_US |
dc.description.firstpage | 1 | en_US |
dc.relation.volume | 10 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.description.numberofpages | 16 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Cabrera-León, Y | - |
dc.contributor.wosstandard | WOS:Fernández-López, P | - |
dc.contributor.wosstandard | WOS:Báez, PG | - |
dc.contributor.wosstandard | WOS:Kluwak, K | - |
dc.contributor.wosstandard | WOS:Navarro-Mesa, JL | - |
dc.contributor.wosstandard | WOS:Suárez-Araujo, CP | - |
dc.date.coverdate | 2024 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 0,767 | |
dc.description.jcr | 3,9 | |
dc.description.sjrq | Q2 | |
dc.description.jcrq | Q1 | |
dc.description.esci | ESCI | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0001-5709-2274 | - |
crisitem.author.orcid | 0000-0002-2135-6095 | - |
crisitem.author.orcid | 0000-0002-9973-5319 | - |
crisitem.author.orcid | 0000-0003-3860-3424 | - |
crisitem.author.orcid | 0000-0002-8826-0899 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Cabrera León, Ylermi | - |
crisitem.author.fullName | Fernández López, Pablo Carmelo | - |
crisitem.author.fullName | García Baez, Patricio | - |
crisitem.author.fullName | Kluwak,Konrad | - |
crisitem.author.fullName | Navarro Mesa, Juan Luis | - |
crisitem.author.fullName | Suárez Araujo, Carmen Paz | - |
Appears in Collections: | Artículos |
Page view(s)
16
checked on Oct 26, 2024
Download(s)
3
checked on Oct 26, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.