Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/134483
DC FieldValueLanguage
dc.contributor.authorCabrera-Leon, Ylermien_US
dc.contributor.authorFernández-López, Pabloen_US
dc.contributor.authorGarcia Baez, Patricioen_US
dc.contributor.authorKluwak, Konraden_US
dc.contributor.authorNavarro Mesa, Juan Luisen_US
dc.contributor.authorSuárez-Araujo, Carmen Pazen_US
dc.date.accessioned2024-10-21T14:55:28Z-
dc.date.available2024-10-21T14:55:28Z-
dc.date.issued2024en_US
dc.identifier.issn2055-2076en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/134483-
dc.description.abstractObjective The proportion of older people will soon include nearly a quarter of the world population. This leads to an increased prevalence of non-communicable diseases such as Alzheimer's disease (AD), a progressive neurodegenerative disorder and the most common dementia. mild cognitive impairment (MCI) can be considered its prodromal stage. The early diagnosis of AD is a huge issue. We face it by solving these classification tasks: MCI-AD and cognitively normal (CN)-MCI-AD.Methods An intelligent computing system has been developed and implemented to face both challenges. A non-neural preprocessing module was followed by a processing one based on a hybrid and ontogenetic neural architecture, the modular hybrid growing neural gas (MyGNG). The MyGNG is hierarchically organized, with a growing neural gas (GNG) for clustering followed by a perceptron for labeling. For each task, 495 and 819 patients from the Alzheimer's disease neuroimaging initiative (ADNI) database were used, respectively, each with 211 characteristics.Results Encouraging results have been obtained in the MCI-AD classification task, reaching values of area under the curve (AUC) of 0.96 and sensitivity of 0.91, whereas 0.86 and 0.9 in CN-MCI-AD. Furthermore, a comparative study with popular machine learning (ML) models was also performed for each of these tasks.Conclusions The MyGNG proved to be a better computational solution than the other ML methods analyzed. Also, it had a similar performance to other deep learning schemes with neuroimaging. Our findings suggest that our proposal may be an interesting computing solution for the early diagnosis of AD.en_US
dc.languageengen_US
dc.relation.ispartofDigital Healthen_US
dc.sourceDigital Health [ISSN 2055-2076], v. 10, p. 1-6, (2024)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherMild Cognitive Impairmenten_US
dc.subject.otherMini-Mental-Stateen_US
dc.subject.otherDementiaen_US
dc.subject.otherCriteriaen_US
dc.subject.otherClassificationen_US
dc.subject.otherMetaanalysisen_US
dc.subject.otherRobusten_US
dc.subject.otherAlzheimer'S Diseaseen_US
dc.subject.otherArtificial Neural Networken_US
dc.subject.otherComputer-Aided Diagnosisen_US
dc.subject.otherMild Cognitive Impairmenten_US
dc.subject.otherMachine Learningen_US
dc.titleToward an intelligent computing system for the early diagnosis of Alzheimer's disease based on the modular hybrid growing neural gasen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1177/20552076241284349en_US
dc.identifier.isi001328772400001-
dc.description.lastpage16en_US
dc.description.firstpage1en_US
dc.relation.volume10en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Cabrera-León, Y-
dc.contributor.wosstandardWOS:Fernández-López, P-
dc.contributor.wosstandardWOS:Báez, PG-
dc.contributor.wosstandardWOS:Kluwak, K-
dc.contributor.wosstandardWOS:Navarro-Mesa, JL-
dc.contributor.wosstandardWOS:Suárez-Araujo, CP-
dc.date.coverdate2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,767
dc.description.jcr3,9
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.esciESCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-5709-2274-
crisitem.author.orcid0000-0002-2135-6095-
crisitem.author.orcid0000-0002-9973-5319-
crisitem.author.orcid0000-0003-3860-3424-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameCabrera León, Ylermi-
crisitem.author.fullNameFernández López, Pablo Carmelo-
crisitem.author.fullNameGarcía Baez, Patricio-
crisitem.author.fullNameKluwak,Konrad-
crisitem.author.fullNameNavarro Mesa, Juan Luis-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
Appears in Collections:Artículos
Adobe PDF (1,58 MB)
Show simple item record

Page view(s)

16
checked on Oct 26, 2024

Download(s)

3
checked on Oct 26, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.