Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134381
Título: Modelling the heterogeneity of tourist spending in a mature destination: an approach through infinite mixture
Autores/as: Gómez Déniz, Emilio 
Dávila Cárdenes, María Nancy 
Clasificación UNESCO: 5302 Econometría
531290 Economía sectorial: turismo
Palabras clave: Empirical And Non Empirical Bayes
Heterogeneous Expenditure
Multivariate Pareto Distribution
Tourism
Fecha de publicación: 2024
Publicación seriada: Heliyon 
Resumen: Identifying tourists' preferences is essential for stakeholders to provide better products and services. Among the tools to classify such choices, expenditure segmentation is valuable for separating tourist groups with shared interests. The underlying idea of the (infinite) mixture model is that tourists spend on a specific activity depending on their preferences. However, the propensity to consume may be based on or influenced by the group to which the tourist belongs. Thus, such a tendency could increase depending on homogeneity or heterogeneity. This paper uses a compound distribution mixture to model the expenditure heterogeneity. The resulting mixture model derives from a multivariate Pareto (Lomax) distribution that is easy to implement and includes zero value in its support since it is empirically proven that a tourist's expenditure on some activity can be zero. Results show that once the spending on transport has been carried out, tourists prefer to spend more on food than other activities. Conditioned to the expense carried out on food, the mean expenditure on leisure activities is more significant than on transport. Finally, tourists would prefer to spend more on food than on transportation once they decide to spend on other activities.
URI: http://hdl.handle.net/10553/134381
DOI: 10.1016/j.heliyon.2024.e37799
Fuente: Heliyon [EISSN 2405-8440], v. 10 (19), (Octubre 2024)
Colección:Artículos
Adobe PDF (490,1 kB)
Vista completa

Visitas

106
actualizado el 23-nov-2024

Descargas

16
actualizado el 23-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.