Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/133405
Title: | High-pressure x-ray scattering and computer simulation studies of density-induced polyamorphism in silicon | Authors: | Daisenberger, Dominik Wilson, Mark McMillan, Paul F. Quesada Cabrera, Raúl Wilding, Martin C. Machon, Denis |
UNESCO Clasification: | 2307 Química física | Issue Date: | 2007 | Journal: | Physical Review B - Condensed Matter and Materials Physics | Abstract: | A low- to high-density pressure-driven phase transition in amorphous silicon is investigated by synchrotron x-ray diffraction in the diamond anvil cell. Complementary atomistic molecular dynamics computer simulations provide insight into the underlying structural transformations and allow us to interpret the structure factors obtained from experiment. During compression the form of the scattering function S (Q) changes abruptly at 13.5 GPa, indicating significant structural rearrangement in the amorphous solid. In particular, the first peak in S (Q) shifts to larger Q values. The changes are correlated with the occurrence of a low- to high-density (LDA-HDA) polyamorphic transition observed previously using Raman scattering and electrical conductivity measurements. The data are analyzed to provide real space (pair distribution function) information. The experimental data are compared with results from molecular dynamics (MD) simulations using a modified Stillinger-Weber many-body potential energy function in order to extract structural information on the densified amorphous material. We deduce that the polyamorphic transition involves an abrupt increase in the proportion of 5- and 6-coordinate Si atoms. The overall structure of the HDA polyamorph can be related to that of the LDA form by creation of highly-coordinated "defects" within the tetrahedrally-bonded LDA network. However classical and quantum MD simulations indicate that an even higher density amorphous state might exist, based on structures that resemble the densely-packed metallic polymorphs of crystalline Si. © 2007 The American Physical Society. | URI: | http://hdl.handle.net/10553/133405 | ISSN: | 1098-0121 | DOI: | 10.1103/PhysRevB.75.224118 | Source: | Physical Review B - Condensed Matter and Materials Physics [ISSN 1098-0121], v. 75, n. 22 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
89
checked on Nov 10, 2024
WEB OF SCIENCETM
Citations
87
checked on Nov 10, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.