Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/133373
Campo DC Valoridioma
dc.contributor.authorHameed, Adel-
dc.contributor.authorFourati, Rahma-
dc.contributor.authorAmmar, Boudour-
dc.contributor.authorSanchez-Medina, Javier J.-
dc.contributor.authorLtifi, Hela-
dc.date.accessioned2024-10-03T08:00:20Z-
dc.date.available2024-10-03T08:00:20Z-
dc.date.issued2024-
dc.identifier.isbn9783031702587-
dc.identifier.issn1865-0929-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/133373-
dc.description.abstractThis study introduces MV-FocalNet, a novel approach for classifying motor imagery from electroencephalography (EEG) signals. MV-FocalNet leverages multi-view representation learning and spatial-temporal modeling to extract diverse properties from multiple frequency bands of EEG data. By integrating information from multiple perspectives, MV-FocalNet captures both local and global features, significantly enhancing the accuracy of motor imagery task classification. Experimental results on two EEG datasets, 2a and 2b, show that MV-FocalNet accurately categorizes various motor movements, including left and right-hand activities, foot motions, and tongue actions. The proposed method outperforms existing state-of-the-art models, achieving substantial improvements in classification accuracy.-
dc.languageeng-
dc.relation.ispartofCommunications in Computer and Information Science-
dc.sourceCommunications in Computer and Information Science[ISSN 1865-0929],v. 2166 CCIS, p. 393-405, (Enero 2024)-
dc.subject3314 Tecnología médica-
dc.subject.otherElectroencephalography-
dc.subject.otherFocal Modulation Networks-
dc.subject.otherMotor Imagery-
dc.subject.otherMulti-View Representation-
dc.titleA Multi-view Spatio-Temporal EEG Feature Learning for Cross-Subject Motor Imagery Classification-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conference16th International Conference on Computational Collective Intelligence (ICCCI 2024)-
dc.identifier.doi10.1007/978-3-031-70259-4_30-
dc.identifier.scopus85204560281-
dc.identifier.isi001331194300030-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58559836000-
dc.contributor.authorscopusid44961198800-
dc.contributor.authorscopusid23974208100-
dc.contributor.authorscopusid26421466600-
dc.contributor.authorscopusid35092982000-
dc.identifier.eissn1865-0937-
dc.description.lastpage405-
dc.description.firstpage393-
dc.relation.volume2166 CCIS-
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresos-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages13-
dc.utils.revision-
dc.contributor.wosstandardWOS:Hameed, A-
dc.contributor.wosstandardWOS:Fourati, R-
dc.contributor.wosstandardWOS:Ammar, B-
dc.contributor.wosstandardWOS:Sanchez-Medina, J-
dc.contributor.wosstandardWOS:Ltifi, H-
dc.date.coverdateEnero 2024-
dc.identifier.conferenceidevents155448-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
dc.description.sjr0,203-
dc.description.sjrqQ4-
dc.description.miaricds9,6-
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.