Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/133373
Campo DC Valoridioma
dc.contributor.authorHameed, Adelen_US
dc.contributor.authorFourati, Rahmaen_US
dc.contributor.authorAmmar, Boudouren_US
dc.contributor.authorSanchez-Medina, Javier J.en_US
dc.contributor.authorLtifi, Helaen_US
dc.date.accessioned2024-10-03T08:00:20Z-
dc.date.available2024-10-03T08:00:20Z-
dc.date.issued2024en_US
dc.identifier.isbn9783031702587en_US
dc.identifier.issn1865-0929en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/133373-
dc.description.abstractThis study introduces MV-FocalNet, a novel approach for classifying motor imagery from electroencephalography (EEG) signals. MV-FocalNet leverages multi-view representation learning and spatial-temporal modeling to extract diverse properties from multiple frequency bands of EEG data. By integrating information from multiple perspectives, MV-FocalNet captures both local and global features, significantly enhancing the accuracy of motor imagery task classification. Experimental results on two EEG datasets, 2a and 2b, show that MV-FocalNet accurately categorizes various motor movements, including left and right-hand activities, foot motions, and tongue actions. The proposed method outperforms existing state-of-the-art models, achieving substantial improvements in classification accuracy.en_US
dc.languageengen_US
dc.relation.ispartofCommunications in Computer and Information Scienceen_US
dc.sourceCommunications in Computer and Information Science[ISSN 1865-0929],v. 2166 CCIS, p. 393-405, (Enero 2024)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherElectroencephalographyen_US
dc.subject.otherFocal Modulation Networksen_US
dc.subject.otherMotor Imageryen_US
dc.subject.otherMulti-View Representationen_US
dc.titleA Multi-view Spatio-Temporal EEG Feature Learning for Cross-Subject Motor Imagery Classificationen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference16th International Conference on Computational Collective Intelligence (ICCCI 2024)en_US
dc.identifier.doi10.1007/978-3-031-70259-4_30en_US
dc.identifier.scopus85204560281-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58559836000-
dc.contributor.authorscopusid44961198800-
dc.contributor.authorscopusid23974208100-
dc.contributor.authorscopusid26421466600-
dc.contributor.authorscopusid35092982000-
dc.identifier.eissn1865-0937-
dc.description.lastpage405en_US
dc.description.firstpage393en_US
dc.relation.volume2166 CCISen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2024en_US
dc.identifier.conferenceidevents155448-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,203
dc.description.sjrqQ4
dc.description.miaricds9,6
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.