Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/133373
DC FieldValueLanguage
dc.contributor.authorHameed, Adel-
dc.contributor.authorFourati, Rahma-
dc.contributor.authorAmmar, Boudour-
dc.contributor.authorSanchez-Medina, Javier J.-
dc.contributor.authorLtifi, Hela-
dc.date.accessioned2024-10-03T08:00:20Z-
dc.date.available2024-10-03T08:00:20Z-
dc.date.issued2024-
dc.identifier.isbn9783031702587-
dc.identifier.issn1865-0929-
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/133373-
dc.description.abstractThis study introduces MV-FocalNet, a novel approach for classifying motor imagery from electroencephalography (EEG) signals. MV-FocalNet leverages multi-view representation learning and spatial-temporal modeling to extract diverse properties from multiple frequency bands of EEG data. By integrating information from multiple perspectives, MV-FocalNet captures both local and global features, significantly enhancing the accuracy of motor imagery task classification. Experimental results on two EEG datasets, 2a and 2b, show that MV-FocalNet accurately categorizes various motor movements, including left and right-hand activities, foot motions, and tongue actions. The proposed method outperforms existing state-of-the-art models, achieving substantial improvements in classification accuracy.-
dc.languageeng-
dc.relation.ispartofCommunications in Computer and Information Science-
dc.sourceCommunications in Computer and Information Science[ISSN 1865-0929],v. 2166 CCIS, p. 393-405, (Enero 2024)-
dc.subject3314 Tecnología médica-
dc.subject.otherElectroencephalography-
dc.subject.otherFocal Modulation Networks-
dc.subject.otherMotor Imagery-
dc.subject.otherMulti-View Representation-
dc.titleA Multi-view Spatio-Temporal EEG Feature Learning for Cross-Subject Motor Imagery Classification-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conference16th International Conference on Computational Collective Intelligence (ICCCI 2024)-
dc.identifier.doi10.1007/978-3-031-70259-4_30-
dc.identifier.scopus85204560281-
dc.identifier.isi001331194300030-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58559836000-
dc.contributor.authorscopusid44961198800-
dc.contributor.authorscopusid23974208100-
dc.contributor.authorscopusid26421466600-
dc.contributor.authorscopusid35092982000-
dc.identifier.eissn1865-0937-
dc.description.lastpage405-
dc.description.firstpage393-
dc.relation.volume2166 CCIS-
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresos-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages13-
dc.utils.revision-
dc.contributor.wosstandardWOS:Hameed, A-
dc.contributor.wosstandardWOS:Fourati, R-
dc.contributor.wosstandardWOS:Ammar, B-
dc.contributor.wosstandardWOS:Sanchez-Medina, J-
dc.contributor.wosstandardWOS:Ltifi, H-
dc.date.coverdateEnero 2024-
dc.identifier.conferenceidevents155448-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
dc.description.sjr0,182-
dc.description.sjrqQ4-
dc.description.miaricds9,6-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

298
checked on Jan 9, 2026

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.