Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/133367
DC FieldValueLanguage
dc.contributor.authorGupta, Amit Kumaren_US
dc.contributor.authorMathur, Priyaen_US
dc.contributor.authorSheth, Farhanen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.contributor.authorChaurasia, Sandeepen_US
dc.date.accessioned2024-10-03T06:53:21Z-
dc.date.available2024-10-03T06:53:21Z-
dc.date.issued2024en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/133367-
dc.description.abstractThis study aims to tackle the obstacles linked with geological image segmentation by employing sophisticated deep learning techniques. Geological formations, characterized by diverse forms, sizes, textures, and colors, present a complex landscape for traditional image processing techniques. Drawing inspiration from recent advancements in image segmentation, particularly in medical imaging and object recognition, this research proposed a comprehensive methodology tailored to the specific requirements of geological image datasets. To establish the dataset, a minimum of 50 images per rock type was deemed essential, with the majority captured at the University of Las Palmas de Gran Canaria and during a field expedition to La Isla de La Palma, Spain. This dual-source approach ensures diversity in geological formations, enriching the dataset with a comprehensive range of visual characteristics. The study involves the identification of 19 distinct rock types, each documented with 50 samples, resulting in a comprehensive database containing 950 images. The methodology involves two crucial phases: initial preprocessing of the dataset, focusing on formatting and optimization, and subsequent application of deep learning models—ResNets, Inception V3, DenseNets, MobileNets V3, and EfficientNet V2 large. Preparing the dataset is crucial for improving both the quality and relevance, thereby to ensure the optimal performance of deep learning models, the dataset was preprocessed. Following this, transfer learning or more specifically fine-tuning is applied in the subsequent phase with ResNets, Inception V3, DenseNets, MobileNets V3, and EfficientNet V2 large, leveraging pre-trained models to enhance classification task performance. After fine-tuning eight deep learning models with optimal hyperparameters, including ResNet101, ResNet152, Inception-v3, DenseNet169, DenseNet201, MobileNet-v3-small, MobileNet-v3-large, and EfficientNet-v2-large, comprehensive evaluation revealed exceptional performance metrics. DenseNet201 and InceptionV3 attained the highest accuracy of 98.49% when tested on the original dataset, leading in precision, sensitivity, specificity, and F-score. Incorporating preprocessing steps further improved results, with all models exceeding 97.5% accuracy on the preprocessed dataset. In K-Fold cross-validation (k = 5), MobileNet V3 large excelled with the highest accuracy of 99.15%, followed by ResNet101 at 99.08%. Despite varying training times, models on the preprocessed dataset showed faster convergence without overfitting. Minimal misclassifications were observed, mainly among specific classes. Overall, the study's methodologies yielded remarkable results, surpassing 99% accuracy on the preprocessed dataset and in K-Fold cross-validation, affirming the efficacy in advancing rock type understanding.en_US
dc.languageengen_US
dc.relation.ispartofApplied Computing And Geosciencesen_US
dc.sourceApplied Computing and Geosciences[EISSN 2590-1974],v. 23, (Septiembre 2024)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherFine-Tuningen_US
dc.subject.otherGeological Image Segmentationen_US
dc.subject.otherImage Classificationen_US
dc.subject.otherK-Fold Cross-Validationen_US
dc.subject.otherTransfer Learningen_US
dc.titleAdvancing geological image segmentation: Deep learning approaches for rock type identification and classificationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.acags.2024.100192en_US
dc.identifier.scopus85203137668-
dc.contributor.orcid0000-0002-5345-2794-
dc.contributor.orcid0000-0003-0378-7171-
dc.contributor.orcid0009-0009-9371-6983-
dc.contributor.orcid0000-0002-4621-2768-
dc.contributor.orcid0000-0002-0935-9795-
dc.contributor.authorscopusid57211694716-
dc.contributor.authorscopusid57210263461-
dc.contributor.authorscopusid58953201300-
dc.contributor.authorscopusid57219115631-
dc.contributor.authorscopusid57193862990-
dc.identifier.eissn2590-1974-
dc.relation.volume23en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,487
dc.description.sjrqQ2
dc.description.miaricds3,3
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.