Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/132871
DC FieldValueLanguage
dc.contributor.authorBetancor Sánchez, Manuelen_US
dc.contributor.authorCastro Navarro, Noemíen_US
dc.contributor.authorMorales De La Nuez, Antonio Joséen_US
dc.contributor.authorHernández Castellano, Lorenzo Enriqueen_US
dc.contributor.authorGonzalez Cabrera, Martaen_US
dc.contributor.authorArgüello Henríquez, Anastasioen_US
dc.date.accessioned2024-09-04T08:14:57Z-
dc.date.available2024-09-04T08:14:57Z-
dc.date.issued2024en_US
dc.identifier.isbn978-3-03917-093-7en_US
dc.identifier.urihttp://hdl.handle.net/10553/132871-
dc.description.abstractIntroduction Immunoglobulin G colostrum estimation is crucial in ruminant dairy farms due to agammablogulinemic or hypogammablobulinemic status of the ruminant’s newborn. Some methods are use at farm, such as colostrometer or refractometer. Colostrum colour was proposed to estimate IgG in goat colostrum by Argüello et al. (2005). Since 2005, artificial intelligence has advanced exponentially. Algorithmic advancements, the exponential increases in computing power and storage and an explosion of data, as highlighted in the McKinsey AI guide (Chui & McCarthy, 2020), have evolved synergistically. This evolution has facilitated access to computational and statistical tools, opening a new realm of possibilities for the scientific community. The objective of the present study was improving the IgG estimation trough colour in goat colostrum using Machine learning and Deep learning methodologies. Materials and Methods The data set from Arguello et al. (2005) was used. IgG (using ELISA) and CIE colour (L, Cr and Hue) were measured in 813 goat colostrum samples. The data set was randomly divided in two subsets, one for training the models (650 registers) and one for testing the models (163 registers). The models have been generated using Python version 3.11.7. Techniques based on regression have been employed, specifically decision trees in Machine learning, utilizing the Sklearn package, and neural networks in Deep learning through the TensorFlow and Keras packages. Subsequently, in both techniques, the regression obtained has been factored into two values, HIGH in the case of IgG value greater than 20 mg/ml, or LOW otherwise, to generate evaluation metrics under the same conditions as those conducted in the original study. Results In the original 2005 study, an Accuracy of 0.87, a Sensitivity of 0.93, a Specificity of 0.71, and a Negative Predictive Value of 0.78 were obtained. Using the neural network-generated model, these values were to 0.96, 0.94, 0.97, and 0.97, respectively. Using tree regression, resulting in an Accuracy of 0.98, Sensitivity of 0.97, Specificity of 1, and Negative Predictive Value of 0.94. Conclusions The utilization of Machine Learning or Deep Learning techniques represents a significant improvement compared to classical statistical methods on the same sample data, obtaining regression data for IgG that are nearly equivalent to those obtained with laboratory techniques.en_US
dc.languageengen_US
dc.sourceBOLFA Biology of lactation in farm animals & ICFAE International Conference on Farm Animal Endocrinology (28-30 agosto 2024)en_US
dc.subject3104 Producción Animalen_US
dc.subject310407 Ovinosen_US
dc.titleImproving IgG determination in goat colostrum using colour through Artificial intelligenceen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceThe 2024 Biology of Lactation in Farm Animals & International Conference on Farm Animal Endocrinologyen_US
dc.identifier.doi10.48350/198657en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateAgosto de 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-VETen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate28-08-2024-
crisitem.event.eventsenddate30-08-2024-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.orcid0000-0002-3026-2031-
crisitem.author.orcid0000-0002-0184-2037-
crisitem.author.orcid0000-0003-2729-0434-
crisitem.author.orcid0000-0002-9735-2162-
crisitem.author.orcid0000-0002-4426-0678-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.fullNameBetancor Sánchez, Manuel-
crisitem.author.fullNameCastro Navarro, Noemí-
crisitem.author.fullNameMorales De La Nuez, Antonio José-
crisitem.author.fullNameHernández Castellano, Lorenzo Enrique-
crisitem.author.fullNameGonzalez Cabrera, Marta-
crisitem.author.fullNameArgüello Henríquez, Anastasio-
Appears in Collections:Actas de congresos
Adobe PDF (1,64 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.