Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/132744
Campo DC Valoridioma
dc.contributor.authorManesh, Mohammad Hasan Khoshgoftar-
dc.contributor.authorDavadgaran, Sepehr-
dc.contributor.authorRabeti, Seyed Alireza Mousavi-
dc.contributor.authorBlanco Marigorta, Ana María-
dc.date.accessioned2024-08-26T12:38:59Z-
dc.date.available2024-08-26T12:38:59Z-
dc.date.issued2024-
dc.identifier.issn0360-5442-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/132744-
dc.description.abstractReliable freshwater production is vital for tackling two of the most critical challenges the world is facing today: climate change and sustainable development. Present work presents an innovative cogeneration system based on solar and wind energies for sustainable production of freshwater, power, and wastewater treatment. For freshwater production and wastewater treatment in this system, the integration of a microbial desalination cell with a humidification-dehumidification and reverse osmosis desalinations has been used. The mentioned systems provide their heat demand from solar energy, and when solar radiation is unable to provide this heat, a hydrogen internal combustion engine drive produces the required heat for the freshwater plant. Excess heat from the hydrogen internal combustion engine is fed into the organic Rankine cycle for more power generation in the whole system to reduce system waste heat and increase efficiency. PEM electrolyzer has been used to supply the hydrogen needed by the internal combustion engine, and this system uses wind turbines to supply the power demand. To evaluate the performance of the whole system, energy, exergy, exergeoeconomic, and exergoenvironmental (4E) analyses have been carried out. Finally, to improve the performance parameters of the system, multi-objective optimization using the Salp swarm algorithm has been used. Investigation of the results show that the proposed system can produce 720 kW of electricity and 5.36 m3/h 3 /h of freshwater. The energy efficiency of the system is 22.09 %, and its overall cost rate and overall environmental impact rate are 540.33 $/hr and 17.37 Pt/h, respectively. Among the qualitative results obtained in this research, it is possible to mention the high exergy destruction, cost destruction, and environmental impact destruction of the internal combustion engine compared to other equipment used in the proposed system, and this point shows the need to improve this equipment, similar to previous researches. The five-objective optimization results of the proposed system showed that the performance parameters of the system, such as polygeneration energy efficiency, total cost rate, and total environmental impact rate, can be improved by 6.2 %, 1.44 %, and 0.52 %, respectively. The payback period of the proposed system in the optimal state is 6.95 years.-
dc.languageeng-
dc.relationInvestigación e innovación hacia la Excelencia en Eficiencia tecnológica, uso de Energías renovables, tecnologías Emergentes y Economía circular en la DESalación-
dc.relation.ispartofEnergy-
dc.sourceEnergy [ISSN 0360-5442], v. 297, (Junio 2024)-
dc.subject3322 Tecnología energética-
dc.subject3303 ingeniería y tecnología químicas-
dc.subject.otherLife-Cycle Assessment-
dc.subject.otherEnvironmental-Analyses-
dc.subject.otherHdh Desalination-
dc.subject.otherExergy Analyses-
dc.subject.otherEnergy-
dc.subject.otherHydrogen-
dc.subject.otherOptimization-
dc.subject.otherPerformance-
dc.subject.otherDesign-
dc.subject.otherDriven-
dc.subject.otherMicrobial Desalination Cell-
dc.subject.otherHdh-Ro-
dc.subject.otherSolar And Wind-
dc.subject.other4E Analysis-
dc.subject.otherOptimization-
dc.titleOptimal 4E evaluation of an innovative solar-wind cogeneration system for sustainable power and fresh water production based on integration of microbial desalination cell, humidification- dehumidification, and reverse osmosis desalination-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1016/j.energy.2024.131256-
dc.identifier.isi001293785000001-
dc.identifier.eissn1873-6785-
dc.relation.volume297-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages20-
dc.utils.revision-
dc.contributor.wosstandardWOS:Manesh, MHK-
dc.contributor.wosstandardWOS:Davadgaran, S-
dc.contributor.wosstandardWOS:Rabeti, SAM-
dc.contributor.wosstandardWOS:Blanco-Marigorta, AM-
dc.date.coverdateJunio 2024-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-ING-
dc.description.sjr2,11-
dc.description.jcr8,9-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0003-4635-7235-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameBlanco Marigorta, Ana María-
crisitem.project.principalinvestigatorBlanco Marigorta, Ana María-
Colección:Artículos
Adobe PDF (11,87 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.