Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/132179
DC FieldValueLanguage
dc.contributor.authorVasquez Salazar, Ruben Darioen_US
dc.contributor.authorCardona Mesa, Ahmed Alejandroen_US
dc.contributor.authorGómez, Luisen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.contributor.authorGaravito-González, Andrés F.en_US
dc.contributor.authorVásquez-Cano, Estebanen_US
dc.date.accessioned2024-07-17T12:28:11Z-
dc.date.available2024-07-17T12:28:11Z-
dc.date.issued2024en_US
dc.identifier.isbn9783800762873en_US
dc.identifier.issn2197-4403en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/132179-
dc.description.abstractIn the field of computer vision, Deep Learning (DL) emerges as an extremely useful and powerful tool for image processing. When training DL models with the supervised learning paradigm, labeled datasets must contain input and output data. In DL models, and more specifically those designed for filtering tasks, a labeled dataset should ideally contain two subsets: one comprising noisy images as inputs and another comprising noiseless images as outputs. This way, the model will update its inner filters and weights, trying to find a way to restore the image. SAR (Synthetic Aperture Radar) images include speckle inherent to the sensor, making it unattainable to have a valid reference (ground truth image). The traditional approach is to corrupt with a speckle model a clean image, so a ground truth image to evaluate image-quality indices is available, and therefore, despeckling filters and DL models can be properly designed. In a more realistic approach, the ground truth is crafted from actual SAR images. In this paper, a multitemporal fusion strategy was used to design a dataset from SAR images, and data augmentation techniques were then applied to improve its quality. Nineteen datasets were designed and evaluated with different metrics to attain a better version of the dataset. Additionally, we employed a transformer called SwinIR to restore the images and increase the details and edges in the output images, resulting in a high-quality dataset that can be used to train models with supervised learning.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of the European Conference on Synthetic Aperture Radar, EUSARen_US
dc.sourceProceedings of the European Conference on Synthetic Aperture Radar, EUSAR[ISSN 2197-4403], p. 509-512, (Enero 2024)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.titleDesign of a labeled dataset for despeckling SAR imageryen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference15th European Conference on Synthetic Aperture Radar, EUSAR 2024en_US
dc.identifier.scopus85193956356-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58544220200-
dc.contributor.authorscopusid58544725400-
dc.contributor.authorscopusid56789548300-
dc.contributor.authorscopusid57219115631-
dc.contributor.authorscopusid58705423800-
dc.contributor.authorscopusid58705409300-
dc.description.lastpage512en_US
dc.description.firstpage509en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2024en_US
dc.identifier.conferenceidevents153182-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,168
dc.description.sjrq-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-0667-2302-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameVasquez Salazar, Ruben Dario-
crisitem.author.fullNameCardona Mesa, Ahmed Alejandro-
crisitem.author.fullNameGómez Déniz, Luis-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

32
checked on Oct 5, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.