Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/131973
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Sánchez-Nielsen, Elena | en_US |
dc.contributor.author | Castrillón-Santana, Modesto | en_US |
dc.contributor.author | Freire Obregón, David Sebastián | en_US |
dc.contributor.author | Santana Jaria, Oliverio Jesús | en_US |
dc.contributor.author | Hernández-Sosa, Daniel | en_US |
dc.contributor.author | Lorenzo-Navarro, Javier | en_US |
dc.date.accessioned | 2024-07-01T08:46:44Z | - |
dc.date.available | 2024-07-01T08:46:44Z | - |
dc.date.issued | 2024 | en_US |
dc.identifier.issn | 2661-8907 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/131973 | - |
dc.description.abstract | Pedestrian Attribute Recognition (PAR) poses a significant challenge in developing automatic systems that enhance visual surveillance and human interaction. In this study, we investigate using Visual Question Answering (VQA) models to address the zero-shot PAR problem. Inspired by the impressive results achieved by a zero-shot VQA strategy during the PAR Contest at the 20th International Conference on Computer Analysis of Images and Patterns in 2023, we conducted a comparative study across three state-of-the-art VQA models, two of them based on BLIP-2 and the third one based on the Plug-and-Play VQA framework. Our analysis focuses on performance, robustness, contextual question handling, processing time, and classification errors. Our findings demonstrate that both BLIP-2-based models are better suited for PAR, with nuances related to the adopted frozen Large Language Model. Specifically, the Open Pre-trained Transformers based model performs well in benchmark color estimation tasks, while FLANT5XL provides better results for the considered binary tasks. In summary, zero-shot PAR based on VQA models offers highly competitive results, with the advantage of avoiding training costs associated with multipurpose classifiers. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | SN Computer Science | en_US |
dc.source | SN Computer Science [ISSN 2661-8907], v. 5, (680), (Junio 2024) | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Pedestrian attribute recognition | en_US |
dc.subject.other | Biometrics | en_US |
dc.subject.other | Vision language models | en_US |
dc.subject.other | Visual question answering | en_US |
dc.title | Visual Question Answering Models for Zero-Shot Pedestrian Attribute Recognition: A Comparative Study | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s42979-024-02985-0 | en_US |
dc.identifier.scopus | 85197373236 | - |
dc.contributor.orcid | 0000-0002-8673-2725 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 57218418238 | - |
dc.contributor.authorscopusid | 13105159100 | - |
dc.contributor.authorscopusid | 23396618800 | - |
dc.contributor.authorscopusid | 7003605046 | - |
dc.contributor.authorscopusid | 6507124168 | - |
dc.contributor.authorscopusid | 15042453800 | - |
dc.identifier.eissn | 2661-8907 | - |
dc.identifier.issue | 6 | - |
dc.relation.volume | 5 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 13 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Junio 2024 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 0,721 | - |
dc.description.sjrq | Q2 | - |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-8673-2725 | - |
crisitem.author.orcid | 0000-0003-2378-4277 | - |
crisitem.author.orcid | 0000-0001-7511-5783 | - |
crisitem.author.orcid | 0000-0003-3022-7698 | - |
crisitem.author.orcid | 0000-0002-2834-2067 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Castrillón Santana, Modesto Fernando | - |
crisitem.author.fullName | Freire Obregón, David Sebastián | - |
crisitem.author.fullName | Santana Jaria, Oliverio Jesús | - |
crisitem.author.fullName | Hernández Sosa, José Daniel | - |
crisitem.author.fullName | Lorenzo Navarro, José Javier | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.