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Abstract
Pedestrian Attribute Recognition (PAR) poses a significant challenge in developing automatic systems that enhance visual 
surveillance and human interaction. In this study, we investigate using Visual Question Answering (VQA) models to address 
the zero-shot PAR problem. Inspired by the impressive results achieved by a zero-shot VQA strategy during the PAR Contest 
at the 20th International Conference on Computer Analysis of Images and Patterns in 2023, we conducted a comparative 
study across three state-of-the-art VQA models, two of them based on BLIP-2 and the third one based on the Plug-and-Play 
VQA framework. Our analysis focuses on performance, robustness, contextual question handling, processing time, and clas-
sification errors. Our findings demonstrate that both BLIP-2-based models are better suited for PAR, with nuances related to 
the adopted frozen Large Language Model. Specifically, the Open Pre-trained Transformers based model performs well in 
benchmark color estimation tasks, while FLANT5XL provides better results for the considered binary tasks. In summary, 
zero-shot PAR based on VQA models offers highly competitive results, with the advantage of avoiding training costs asso-
ciated with multipurpose classifiers.
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Introduction

Soft biometrics encompass various human attributes such as 
gender, age, clothing, accessories, or hairstyles. These char-
acteristics alone do not definitively distinguish an individual. 
However, they can complement the information provided by 
biometric traits to enhance recognition performance [1], or 
their combined use may be robust enough for face verifica-
tion and search in close-up facial images [2]. In surveillance 
scenarios, where the use of faces as unique biometric cue 
is challenging for state-of-the-art face recognizers, due to 
low resolution, unrestricted pose, and frequent occlusion [3, 
4], leveraging such ancillary information would be highly 
beneficial.

Pedestrian Attribute Recognition (PAR) has often been 
adopted to search or retrieve a person in real-world surveil-
lance images or video footage [5]. PAR leverages advanced 
computer vision, pattern recognition, and machine learning 
techniques to automate attribute recognition, enabling auto-
matic systems to manage complex situations and enhance 
public safety, security, and human interaction. Additionally, 
PAR provides interpretable information for human observers, 

Elena Sánchez-Nielsen, David Freire-Obregón, Oliverio J. Santana, 
Daniel Hernández-Sosa and Javier Lorenzo-Navarro contributed 
equally to this work.

 * Modesto Castrillón-Santana 
 modesto.castrillon@ulpgc.es

 Elena Sánchez-Nielsen 
 enielsen@ull.edu.es

 David Freire-Obregón 
 david.freire@ulpgc.es

 Oliverio J. Santana 
 oliverio.santana@ulpgc.es

 Daniel Hernández-Sosa 
 daniel.hernandez@ulpgc.es

 Javier Lorenzo-Navarro 
 javier.lorenzo@ulpgc.es

1 SIANI, Universidad de Las Palmas de Gran Canaria, 
35017 Las Palmas de Gran Canaria, Spain

2 Universidad de La Laguna, 
38200 San Cristóbal de La Laguna, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02985-0&domain=pdf
http://orcid.org/0000-0002-8673-2725


 SN Computer Science           (2024) 5:680   680  Page 2 of 13

SN Computer Science

as those attributes offer comprehensive semantic details that 
facilitate the creation of human categories.

PAR is an active research field, evidenced by the grow-
ing number of scholarly papers on this topic and the active 
engagement in recent international competitions [6–8]. This 
surge of interest underscores the broad range of PAR appli-
cations, including human–machine interaction, retail analyt-
ics, smart cities, and surveillance scenarios. However, sev-
eral challenges persist. Ethical and privacy considerations 
play a crucial role in dataset preparation, and a significant 
domain gap often exists between test and real-world deploy-
ment scenarios [9].

In recent years, zero-shot approaches have become 
increasingly prevalent in the literature [9, 10]. In this sense, 
successfully applying zero-shot strategies could shift the 
established paradigm. A zero-shot Visual Question Answer-
ing (VQA) approach has recently demonstrated remarkable 
competitiveness in the PAR problem [11]. That approach 
leveraged a pre-trained BLIP-2 for a VQA benchmark [12], 
outperforming all competitors in the PAR Contest-CAIP23 

test set [8]. This achievement was attained without relying 
on the provided training data, as no training or fine-tuning 
was necessary. The results indicated that the VQA-based 
proposal consistently delivered robust performance across 
diverse datasets, spanning the five proposed benchmark 
tasks.

In our current study, we expand upon the preliminary 
evaluation covered in our earlier work [11], assessing a sin-
gle VQA model. This time, we consider up to three distinct 
VQA models for the PAR Contest-CAIP23 benchmark. Our 
evaluation now encompasses results from the fully annotated 
validation and partially annotated training sets. The contri-
butions of our research are threefold:

• Extensive Model Evaluation: we rigorously evaluate mul-
tiple VQA models on the PAR Contest-CAIP23 bench-
mark, comprehensively comparing their performance.

• Model Selection: we determine the most suitable VQA 
model for each specific task within the benchmark, 

Fig. 1  A short excerpt of 
MIVIA dataset samples (image 
from [8])
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ensuring optimal performance across various attribute 
recognition scenarios.

• Visual Error Analysis: unlike our previous work [11], 
we delve into a detailed visual analysis of classifica-
tion errors, shedding light on areas for improvement and 
potential refinements.

PAR Contest‑CAIP23 Benchmark

As mentioned, this paper extends the proposal presented 
in [11], significantly influencing the final ranking at the PAR 
Contest-CAIP23 benchmark [8]. For this competition, the 
organizers curated the MIVIA dataset comprising 105,244 
pedestrian images, divided into training and validation sets. 
Specifically, the training set contains 93,082 samples, while 
the validation set comprises 12,162 samples, see Fig. 1. 
Those samples were collected from existing datasets, includ-
ing PETA [13] and RAP v2.0 [14]. However, most of the 
dataset consists of private samples meticulously collected 
and annotated by the organizers.

The validation set contains fully annotated samples, 
while the training set includes partially annotated samples. 
Summarizing, each sample may have up to five annotated 
features, with numeric labels denoting these attributes. A 
negative label indicates a non-annotated feature. The differ-
ent features annotated are the following:

• Upper clothes: Each sample in the dataset is annotated 
with a single label corresponding to the dominant color 
present in the upper part of the body’s clothing. The 
annotations include eleven possible colors, each associ-
ated with a numeric label (in brackets): black (1), blue 
(2), brown (3), gray (4), green (5), orange (6), pink (7), 
purple (8), red (9), white (10), and yellow (11). Colors 
beyond this set are not considered in the dataset annota-
tions, nor are color combinations, e.g. red and black.

• Lower clothes: Following the same convention as for 
the upper clothes, a single label corresponds to the main 
color present in the clothes in the lower part of the body.

• Gender: Gender of the foreground person, considering 
two labels, i.e., male (0) and female (1).

• Bag: Indicates the presence or absence of a bag accessory 
considering two labels, i.e., absence (0) and presence (1).

• Hat: Indicates the presence or absence of a hat accessory 
considering two labels, i.e., absence (0) and presence (1).

See Fig. 2 for an illustrative example of the ground truth 
annotation provided in the MIVIA dataset. More details 
about the sample distribution of this dataset can be 
found in the paper describing the PAR Contest-CAIP23 
benchmark [8].

Overall Description

Artificial Intelligence (AI) technologies and intensive learn-
ing applications have led to significant advancements in PAR 
in recent years. The availability of large annotated datasets 
has facilitated the training of deep neural networks for solv-
ing the PAR problem.

Interestingly, our approach diverges from the predomi-
nant trend in PAR literature [7], which focuses on design-
ing architectures and training them using annotated data. 
Instead, we take a different path: we explore zero-shot per-
formance by leveraging existing pre-trained VQA models 
for PAR. By doing so, we avoid the traditional training step 
with available PAR datasets, opening up new possibilities 
for efficient and effective attribute recognition.

VQA models are based on the rise of Large Language 
Models (LLMs). These LLMs are AI systems pre-trained 
on vast amounts of text data, showcasing remarkable lan-
guage understanding, speech generation competence, and 
the ability to handle multi-domain tasks without fine-tuning. 
Traditionally, LLMs have been trained unimodally, focusing 
solely on language. However, VQA offers a meeting point 
for vision-language tasks [15, 16]. Within computer vision 
tasks, we highlight the work by Radford et al. [17], who 
fine-tuned a vision encoder with an LLM, aligning visual 
and linguistic representation spaces. As a result, this model 
accurately performs VQA tasks related to different object 
classification, action recognition, or OCR tasks, achieving 
competitive results with zero-shot transfer. Remarkably, it 

Fig. 2  Example of annotated image from the MIVIA validation set
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outperforms a supervised ResNet-50 trained on millions of 
domain-specific samples, significantly reducing computa-
tional costs. Thanks to the generalization capabilities of 
LLMs, their model can answer questions related to visual 
information without requiring domain-specific training. The 
authors concluded that deep models trained on large data-
sets containing millions of image-text pairs can effectively 
associate visual concepts with their corresponding textual 
descriptions. More recently, a pre-trained Vision Language 
Model (VLM) played a pivotal role in developing the WISE 
Image Search Engine (WISE) [18]. Inspired by the work 
by Radford et al. [17], Sridhar et al. applied a pre-trained 
OpenCLIP VLM, followed by a nearest neighbor search in 
the resulting high-dimensional feature space. This innova-
tive approach enables content-based image search, yielding 
relevant results.

In our proposed pipeline, see Fig. 3, we evaluate the 
efficacy of various pre-trained models without the need for 
additional training on the datasets provided by the contest 
organizers. Our primary goal is to assess the potential of 
using pre-trained VQA models for PAR. Initially, our plan 
for the PAR Contest-CAIP23 was to study a range of various 
VQA models. However, due to contest deadlines, we evalu-
ated a single BLIP-2 model [12] for this purpose. Following 
the impressive results of the zero-shot transfer strategy in 
the PAR Contest-CAIP23, we have expanded our investi-
gation. In the present work, we adopt and evaluate three 
different VQA models. Our assessment covers a broader 
spectrum, exploring additional VQA techniques and their 
adaptation to the specific challenges posed by PAR across 
various proposed tasks. In this sense, we delve into zero-shot 
VQA methods [19], eliminating the need for ground-truth 
question-answer annotations.

Recently, VQA has garnered significant attention from 
the research community after competitive results were 
reported for different computer vision tasks. VQA is a 

powerful intersection between computer vision and natural 
language processing [16]. Unlike image captioning, where 
image semantic information is extracted and expressed for 
human understanding, adopting a VQA strategy, the infor-
mation is extracted according to the observer’s needs, who 
may pose a question to obtain targeted information or even 
create an adaptive interaction tree based on previous que-
ries. In a VQA system, the information within an image is 
compared with a set of questions expressed in natural lan-
guage. Among the diverse applications identified by Barra 
et al. [16] for VQA, surveillance and biometrics are valid 
real-world scenarios [20]. In our approach, we meticulously 
design clear and direct questions tailored to the benchmark 

Fig. 3  The processing pipeline takes an input image that, according to the specific task in hands, poses one or more questions to the evaluated 
VQA model, which provides a short answer in natural language (NL) that is later mapped to a valid numerical label included in the annotation

Fig. 4  MIVIA validation set samples with (left) upper clothes color 
annotated as a single color, triggering a combined color answer by 
the BLIP-2 OPT model, i.e., “blue and white”, and (right) upper 
clothes color with different jacket and shirt color. The annotated label 
refers to the jacket color
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tasks, ensuring their feasibility based on evaluation against 
the contest validation set.

As mentioned, we conducted our assessment and analysis 
with three different VQA models:

• OPT: a pre-trained BLIP-2 language model [12] that 
adopts a pre-training strategy based on off-the-shelf fro-
zen pre-trained image encoders and a frozen Open Pre-
trained Transformers (OPT) language model [21], who 
was trained on a large-scale corpus of text data and fine-
tuned for VQA with the Visual Transformer (ViT) base 
backbone [22]. This was the model adopted in [11].

• FLANT5XL: a pre-trained BLIP-2 language model [12] 
that uses Flan-T5 model [23] as frozen language model. 
Flan-T5 has achieved strong few-shot performance even 
compared with a much larger model. Flan-T5 XXL leads 
the SOTA on the VQAv2 benchmark, followed by Flan-
T5 XL. Given our hardware possibilities, the latter is the 
one evaluated in the paper.

• PNP: a pre-trained plug-and-play (PNP) model [24] that 
proposes a modular framework for zero-shot VQA that 
does not require training the pre-trained language mod-
els for the specific vision task. This provides context by 
previous image captioning, gluing pre-trained language 
and vision models together. PNP-VQA is currently the 
second LLM in the SOTA on the VQAv2 benchmark.

Contextual Queries

We have adopted the VQA strategy to contextualize the 
expected answers to solve the five contest tasks mentioned 
above: upper color, lower color, gender, bag, and hat. 
While image captioning outputs may be suitable for general 

descriptive tasks, they need to address the specific subtasks 
posed in the contest.

Given the contest subtasks, and after manual observation 
of the answers obtained with the validation set for different 
possible questions for each subtask (see below), the chosen 
questions for each subtask are the following:

• T1. Upper color

– What color is the person’s shirt?
– Does the person wear a jacket?
– What color is the person’s jacket?

• T2. Lower color
– What color is the person’s trousers?

• T3. Gender
– Is the person male or female?

• T4. Bag presence
– Does the person wear a bag?

• T5. Hat presence

– Does the person wear a hat?
– Does the person wear a cap?

As previously mentioned, those questions were carefully 
crafted after a prompt engineering process during VQA 
interactions with some validation set samples. VQA is well 
known for providing short answers in natural language. 
However, each short answer generated by a VQA model 
must later be mapped to the numerical labels expected by 
the contest organizers. The mapping is straightforward for 
the binary tasks (i.e., T3, T4, and T5) when considered in 
their context. For instance:

Table 1  PAR Contest-CAIP23 
validation set accuracy/
precision/recall/F1-score results

There are 12,162 annotated samples. In bold, the highest value obtained for each metric and task

Task OPT PNP FLANT5XL

T1 0.804/0.804/0.804/0.801 0.091/0.298/0.092/0.116 0.602/0.820/0.602/0.620
T2 0.842/0.844/0.842/0.839 0.093/0.468/0.093/0.145 0.493/0.587/0.493/0.522
T3 0.909/0.915/0.754/0.827 0.287/0.287/1.000/0.446 0.958/0.959/0.891/0.924
T4 0.494/0.269/0.980/0.422 0.349/0.218/0.946/0.354 0.885/0.748/0.595/0.661
T5 0.566/0.181/0.987/0.307 0.128/0.099/0.992/0.181 0.923/0.688/0.374/0.484

Table 2  PAR Contest-CAIP23 
training set accuracy/precision/
recall/F1-score results

There are 93,081 partially annotated samples. In bold, the highest value obtained for each metric and task

Task # OPT PNP FLANT5

T1 35,846 0.815/0.813/0.815/0.811 0.090/0.233/0.090/0.112 0.572/0.807/0.572/0.596
T2 60,758 0.832/0.832/0.832/0.828 0.092/0.440/0.092/0.141 0.431/0.569/0.431/0.451
T3 85,411 0.914/0.859/0.824/0.841 0.277/0.277/1.000/0.434 0.966/0.944/0.933/0.938
T4 65,683 0.517/0.242/0.946/0.385 0.366/0.197/0.958/0.326 0.888/0.685/0.565/0.614
T5 78,270 0.555/0.215/0.984/0.352 0.173/0.129/0.996/0.229 0.954/0.859/0.746/0.799
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• The answer to the question posed for T3 directly cor-
responds to the gender subtask (e.g., female or male).

• Similarly, a positive response (i.e., not containing “no”) 
to either of the questions for tasks T4 and T5 indicates 
the presence of the related accessory.

Tasks T1 and T2 exhibit slightly different behavior. While 
the annotation labels encompass eleven distinct color values, 
VQA models cannot provide answers solely from this pre-
defined set. VQA models may offer other colors as answers 
and even multi-color responses are possible. We engaged 
in interactions with the validation set to handle colors not 
explicitly covered by the eleven annotation labels. During 
this process, we encountered a short collection of answers 
that fell outside the original eleven labels. These additional 
colors included grey, khaki, tan, and teal. We decided to 
map grey and tan to gray, khaki to yellow, and teal to black.

Of course, the VQA model may unexpectedly provide 
other colors. In cases where the model’s response is not 
among the considered situations, we assign a random color 
from the original set of eleven labels. Furthermore, when 
the VQA model’s answer comprises a combination of colors 
(e.g., “blue and white,” as shown in Fig. 4, left), we prior-
itize the first color from the list of eleven possible labels or 
their mapped equivalents.

After considering these aspects, T2 is resolved with a 
single question, while T1 requires up to three questions. 
This is because, when interacting with the validation set, we 
observed that the answer to the first question often did not 
match the annotated label when the individual wore a jacket 
or similar garment. This discrepancy arises because the 
VQA model may provide the color of the shirt. In contrast, 
the annotated color refers to the jacket or similar clothing 

Fig. 5  MIVIA validation set confusion matrices for OPT. For T4 and T5, there is an evident large number of FPs. For T3, it is observed a bias 
for the female class. The meaning of the numerical labels associated for each task are defined in Sect. “PAR Contest-CAIP23 Benchmark”
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item when it is present, as illustrated in the relevant sample 
depicted in Fig. 4 right:

Results

This section summarizes the results achieved in both the 
public datasets made available to the PAR Contest-CAIP23 
participants, i.e., training and validation datasets, discussing 

the performance of the evaluated models. In addition, the 
last subsection presents some examples of classification 
errors obtained for each task leader model.

Training and Validation Sets

As mentioned earlier, the combined training and validation 
sets comprise more than 100,000 samples. However, only 
the validation samples are fully annotated, while the training 
images may lack none or any annotated labels.

The results for the different VQA models evaluated on 
the training and validation sets are summarized in Tables 1 
and 2. We utilized scikit-learn (sklearn) to compute accu-
racy, precision, recall, and F1-score metrics. Given the class 
imbalance in multiple classification problems, we used the 
weighted average. It is important to note that the number 
of columns differs between the two tables because training 

Fig. 6  MIVIA validation set confusion matrices for FLANT5XL. For T1 and T5, it is observed a larger sparse distribution of the predicted 
colors. The meaning of the numerical labels associated for each task are defined in Sect. “PAR Contest-CAIP23 Benchmark”
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samples may not be completely annotated. Therefore, we 
have also included the total number of samples for each task 
to compute the corresponding metrics.

Moreover, we decided not to combine the results in a 
single table. Additionally, as the validation set guided the 
question selection process, there might be a bias in the com-
bined results. Considering that the training set contains sig-
nificantly more samples, we have included them to better 
illustrate the generalization observed in the evaluated VQA 
models.

A first observation of the best-performing values achieved 
for each task and set suggests similar behavior, with slightly 
better results observed for the training set in three tasks: T1, 
T3, and T5. However, the PnP-VQA model is the least suit-
able for the PAR tasks, as it significantly underperformed 
against the chosen benchmark. A closer examination reveals 
distinct behavior across the five tasks of both BLIP-2 mod-
els. Interestingly, there is no winner, as the OPT model 
excels in the color estimation tasks (T1 and T2), while the 
FLANT5XL model performs better for the binary tasks 
(T3–T5). An exception to this trend is the recall metric, 
which favors OPT for tasks T4 and T5 when used as LLM. 
As we will show later in the confusion matrices, OPT reports 
a more significant number of positive detections of bags and 
hats but also increases the number of false positives, i.e., 
decreasing precision. Subsequently, let us summarize the 
findings:

• Color estimation tasks, which involve considering eleven 
possible annotated colors, yield promising results using 
the OPT model, with an F1-score exceeding 0.8 for both 
sets and tasks.

• T3, related to gender classification (treated as a binary 
problem), achieves the highest F1-score, surpassing 0.92 
for both datasets using the FLANT5XL model.

• The last two tasks, T4 and T5, exhibit the lowest F1-score 
among the five tasks. However, FLANT5XL achieves the 
highest F1-score, with T4 hovering around 0.6 for both 
datasets. Notably, T5 shows a more pronounced differ-

ence: the F1-score for the training dataset (which has a 
larger number of samples) is significantly higher.

After analyzing the reported metrics, the reader is invited 
to explore the corresponding confusion matrices for the 
models that achieved the best performance in at least one 
subtask: OPT and FLANT5XL. Figures 5 and 6 present the 
matrices for all five subtasks for both models, considering 
the validation set. We have specifically chosen the valida-
tion set because the number of annotated samples per task 
is identical.

The first two matrices in both figures correspond to the 
color-related tasks (T1 and T2). To facilitate their under-
standing, the reader can refer to “PAR Contest-CAIP23 
Benchmark” for the meaning of the eleven labels, which rep-
resent a single color alphabetically sorted (i.e., black, blue, 
brown, gray, green, orange, pink, purple, red, white, and 
yellow). Notably, there is a higher concentration of anno-
tated colors for the lower body; black and blue dominate, 
followed at a distance by gray. The upper body has a more 
significant presence of those three colors, with black being 
the most prevalent.

The OPT model’s diagonal corresponding to upper body 
colors is relatively clean, except for label 6 (orange), which 
is mainly classified as label 9 (red). Additionally, labels 3 
and 7 (respectively brown and pink) are occasionally classi-
fied as red, which may be due to the acquisition conditions, 
creating an illusion even for humans [25]. The most common 
label for upper body clothes, black, is primarily confused by 
blue, gray, and green. Similarly, blue is mistaken for black, 
gray is confused with black, and pink is occasionally clas-
sified as red. These confusions appear reasonable, given the 
limited number of annotated labels.

For the lower clothes color estimation, the confusion 
matrix focuses more on the first four colors: black, blue, 
brown, and gray. Only green and white appear infrequently. 
The reduced number of possible colors limits the range of 
classification errors. This concentration of colors likely con-
tributes to the higher metrics obtained for T2 using the OPT 
model in both datasets.

The observation of both color estimation matrices for 
FLANT5XL, see Fig. 6, exhibits a worse behavior. For upper 
colors, FLANT5XL in T1, black, blue, and red attract most 
prediction errors. For lower colors, the most prevalent labels 
(black and blue) are frequently misinterpreted across the 
entire range of possible labels. To summarize, for T1 and 
T2, the OPT models provide very competitive results. In the 
following subsection, after discussing the results for other 
tasks, we will discuss some classification errors.

Focusing on the three remaining subtasks, observing the 
matrices in the lower part of Figs. 5 and 6 reveals differ-
ences for each task and model. For the gender classification 

Table 3  Average processing time in seconds after analyzing 1000 
samples in a NVIDIA A40 GPU

Question OPT PNP FLANT5XL

Does the person wear a jacket? 0.0149 0.0993 0.0518
What color is the person jacket? 0.0131 0.0984 0.0265
What color is the person shirt? 0.0130 0.0982 0.0230
What color is the person trousers? 0.0130 0.0978 0.0270
Is the person male or female? 0.0156 0.0989 0.0317
Does the person wear a bag? 0.0127 0.0978 0.0539
Does the person wear a hat? 0.0150 0.0982 0.0543
Does the person wear a cap? 0.0148 0.0986 0.0545
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task, where most samples are annotated as males, the OPT 
model exhibits a larger error in classifying females, suggest-
ing a bias in the model. This behavior was already discussed 
in [11] for the validation set. While there is an inherent 

imbalance between the number of males and females in 
both training and validation sets, a closer observation sug-
gests that the model exhibits a bias, misclassifying female 
samples more frequently. However, this behavior is signifi-
cantly reduced in the FLANT5XL model, even though there 

Table 4  Excerpt of OPT 
classification error examples for 
T1 and T2 subtasks
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is still an imbalance in the number of classification errors for 
females, despite their lower presence in both sets, as men-
tioned above.

For the other two tasks, the presence of the accesso-
ries needs to be balanced in the validation set. Therefore, 
observing how classification errors are distributed is crucial 
to assess the model’s robustness. As described in the same 
study [11], the OPT model can detect the presence of hats 
and bags precisely, but at the cost of producing many false 
positives. In contrast, the FLANT5XL model reduces the 
number of false positives and decreases the number of true 
positives, particularly when detecting the presence of hats. 
A final observation regarding both accessory tasks is that 
those items are often located near the image boundaries. 
Consequently, any of the evaluated VQA models may lack 
sufficient contextual information to determine the presence 
of those elements accurately. Unfortunately, we do not have 
the original images to explore this possibility further. Addi-
tionally, adding image context could introduce distractors, 

such as other individuals. In the next section, we present 
some examples of classification errors, evidencing that 
circumstance.

Before concluding this section, we will first delve into 
the processing costs of the evaluated VQA models. Table 3 
presents the average processing time for each question using 
an NVIDIA A40 GPU. OPT demonstrates the highest speed 
among the models, while PNP exhibits the slowest perfor-
mance. FLANT5XL falls in between these extremes. Nota-
bly, the processing time varies based on the type of question. 
Specifically, color-related questions are handled most swiftly 
by the OPT model (except queries related to wearing a bag) 
and FLANT5XL.

In summary, OPT is better suited for solving color-related 
questions and significantly faster than any other evaluated 
model. On the other hand, FLANT5XL is up to four times 
slower but provides better results for binary tasks. The 
achievements in color estimation are particularly impressive, 
considering that this is not a binary classification problem; 

Table 5  Excerpt of FLANT5XL 
classification error examples for 
T3 subtask
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it involves eleven possible classes. As demonstrated below 
in the following subsection, some misclassification results 
reveal that human observers’ perception of color in images 

does not always align perfectly with the provided annota-
tions, especially in scenarios involving multiple individuals 
within the same image.

Table 6  Excerpt of FLANT5XL 
classification error examples for 
T4 and T5 subtasks



 SN Computer Science           (2024) 5:680   680  Page 12 of 13

SN Computer Science

Classification Errors

In this subsection, we aim to illustrate the classification 
errors achieved by the best VQA model for each subtask. 
Consequently, we direct our attention to errors reported by 
the OPT model for T1 and T2, as well as errors reported by 
the FLANT5XL model for T3, T4, and T5.

Table 4 presents a concise collection of samples incor-
rectly classified according to the annotated labels for T1 or 
T2. Among the T1 errors, we deliberately chose some per-
ceptually strong misclassifications, as confusing black with 
(dark) blue may provide less informative insights. The first 
two reported classification errors are likely due to annotation 
errors, as the VQA model provides more accurate labeling. 
However, the reason for the third error example may lie in 
the posed questions. Precisely, the annotated color corre-
sponds to what appears to be the woman’s vest. Interestingly, 
even when no jacket presence is reported by the VQA model 
when asked about the color of the jacket, the answer matches 
the vest color.

For T2, most classification errors are related to colors that 
humans can easily confuse. A noteworthy comment pertains 
to the last example included in the table. The cropped image 
contains two individuals, one partially visible that occludes 
the lower part of the person of interest. The VQA model’s 
answer takes the color from the occluding person, resulting 
in a misclassification.

As previously mentioned, for T3, we exclusively present 
examples of misclassifications using the FLANT5XL model. 
A short collection of instances are displayed in Table 5. The 
first and last examples appear as misclassifications, whereas 
the second example seems to be a clear annotation error. In 
the third case, a woman looking directly at the camera in 
the background could influence the VQA model’s answer.

Finally, let us investigate some classification errors for 
tasks T4 and T5, see Table 6. For T4, the first example fea-
tures a cluttered background that could confuse the VQA 
model. In the second example, the person carries something 
(possibly a bottle), likely triggering a positive model answer. 
In the last T4 example, the adopted question was about the 
presence of a bag, not specifically a backpack, which is 
indeed present in the sample.

Regarding T5, the first example again contains a clut-
tered background, cropped in the image, which might 
impact the VQA model’s answer. The second example is 
intriguing: the person wears a hat on their hand but not on 
their head. Consequently, the annotation is erroneous, yet 
the model answered positively. Lastly, the final example 
depicts a back view, which appears to be a clear misclas-
sification (Table 6).

Conclusions

In recent years, deep learning has revolutionized computer 
vision models. However, these models often require a large 
number of annotated samples and complex architecture lay-
ers. While this has improved performance, it has also sacri-
ficed some level of explainability for human understanding.

Integrating other modalities, such as LLMs, offers a fresh 
perspective in this field. By simplifying the need for exten-
sive training with annotated datasets, we shift our focus away 
from architectural intricacies toward strategic approaches.

In our study, we adopt a zero-shot strategy to address 
the PAR problem. Specifically, we evaluate various VQA 
models across the five tasks included in the PAR Contest-
CAIP23. We assess two state-of-the-art VQA models for 
these tasks alongside the contest-winning model. The con-
sistent outstanding performance across different models 
underscores their suitability for specific tasks. Notably, the 
OPT model excels in color estimation, while FLANT5XL 
outperforms others in binary classification tasks.

Remarkably, this impressive performance is achieved 
through a zero-shot strategy, highlighting the potential 
impact of VLMs in computer vision. Their adaptability and 
flexibility hold great promise for addressing complex real-
world vision challenges. As we look ahead, we anticipate 
significant shifts in how computer vision problems will be 
approached in the near future.
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