Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/131972
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rufo, Saray | en_US |
dc.contributor.author | Aguiar-Castillo, Lidia | en_US |
dc.contributor.author | Rufo Torres,Julio Francisco | en_US |
dc.contributor.author | Perez-Jimenez, Rafael | en_US |
dc.date.accessioned | 2024-07-01T08:45:45Z | - |
dc.date.available | 2024-07-01T08:45:45Z | - |
dc.date.issued | 2024 | en_US |
dc.identifier.issn | 2079-9292 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/131972 | - |
dc.description.abstract | This research presents a novel approach by applying convolutional neural networks (CNNs) to enhance optical camera communication (OCC) signal detection under challenging indoor lighting conditions. The study utilizes a smartphone app to capture images of an LED lamp that emits 25 unique optical codes at distances of up to four meters. The developed CNN model demonstrates superior accuracy and outperforms traditional methodologies, which often struggle under variable illumination. This advancement provides a robust solution for reliable OCC detection where previous methods underperform, particularly in the tourism industry, where it can be used to create a virtual museum on the Unity platform. This innovation showcases the potential of integrating the application with a virtual environment to enhance tourist experiences. It also establishes a comprehensive visible light positioning (VLP) system, marking a significant advance in using CNN for OCC technology in various lighting conditions. The findings underscore the effectiveness of CNNs in overcoming ambient lighting challenges, paving the way for new applications in museums and similar environments and laying the foundation for future OCC system improvements. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Electronics (Switzerland) | en_US |
dc.source | Electronics (Switzerland)[EISSN 2079-9292],v. 13 (10), (Mayo 2024) | en_US |
dc.subject | 3325 Tecnología de las telecomunicaciones | en_US |
dc.subject.other | Convolutional Neural Networks | en_US |
dc.subject.other | Indoor Positioning | en_US |
dc.subject.other | Lighting Constraints | en_US |
dc.subject.other | Optical Camera Communication | en_US |
dc.subject.other | Simulation | en_US |
dc.title | Neural Network-Based Detection of OCC Signals in Lighting-Constrained Environments: A Museum Use Case | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/electronics13101828 | en_US |
dc.identifier.scopus | 85194241487 | - |
dc.identifier.isi | 001233059700001 | - |
dc.contributor.orcid | 0000-0001-8897-5619 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | 0000-0002-2269-6729 | - |
dc.contributor.orcid | 0000-0002-8849-592X | - |
dc.contributor.authorscopusid | 59145175700 | - |
dc.contributor.authorscopusid | 57209208178 | - |
dc.contributor.authorscopusid | 35168120700 | - |
dc.contributor.authorscopusid | 56044417600 | - |
dc.identifier.eissn | 2079-9292 | - |
dc.identifier.issue | 10 | - |
dc.relation.volume | 13 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.description.numberofpages | 16 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Rufo, S | - |
dc.contributor.wosstandard | WOS:Aguiar-Castillo, L | - |
dc.contributor.wosstandard | WOS:Rufo, J | - |
dc.contributor.wosstandard | WOS:Perez-Jimenez, R | - |
dc.date.coverdate | Mayo 2024 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,644 | - |
dc.description.jcr | 2,9 | - |
dc.description.sjrq | Q2 | - |
dc.description.jcrq | Q2 | - |
dc.description.scie | SCIE | - |
dc.description.miaricds | 10,5 | - |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR IDeTIC: División de Fotónica y Comunicaciones | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | GIR IDeTIC: División de Fotónica y Comunicaciones | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | GIR IDeTIC: División de Fotónica y Comunicaciones | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-9938-0386 | - |
crisitem.author.orcid | 0000-0002-2269-6729 | - |
crisitem.author.orcid | 0000-0002-8849-592X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Aguiar Castillo, Carmen Lidia | - |
crisitem.author.fullName | Rufo Torres,Julio Francisco | - |
crisitem.author.fullName | Pérez Jiménez, Rafael | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
1
checked on Dec 22, 2024
WEB OF SCIENCETM
Citations
1
checked on Dec 22, 2024
Page view(s)
17
checked on Jul 6, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.