Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/131186
Título: | Enhancing the maintenance strategy and cost in systems with surrogate assisted multiobjective evolutionary algorithms | Autores/as: | Greiner Sánchez, David Juan Cacereño Ibáñez, Andrés |
Clasificación UNESCO: | 330506 Ingeniería civil 330411 Diseño de sistemas de calculo |
Palabras clave: | Availability Digital Twin (Dt) Evolutionary Algorithms (Ea) Maintenance Multiobjective Optimization, et al. |
Fecha de publicación: | 2024 | Publicación seriada: | Developments in the Built Environment | Resumen: | Digital twins need efficient methodologies to design maintenance strategies for decision-making purposes. Recently, a methodology coupling computational simulation and multiobjective evolutionary algorithms has been proposed for developing maintenance strategies consisting in assigning times for preventive maintenance activities and designing the layout of components of a system, minimizing the unavailability of the system and the strategy cost. Here, surrogate assisted evolutionary algorithms (SAEAs) enhance the multiobjective optimization and improve the drawback of the computational cost of the maintenance strategy assessment based on discrete simulation. Several Kriging surrogates were tested. Two industrial test cases are handled in the experimental section, where the methodology succeed in obtaining nondominated designs improving previous benchmarks, and enhancing state-of-the-art multiobjective optimizers, with up to an order of magnitude in terms of the number of fitness function evaluations. Results show that using multiobjective SAEAs in the development of optimal maintenance strategies could foster and improve digital twins operations. | URI: | http://hdl.handle.net/10553/131186 | DOI: | 10.1016/j.dibe.2024.100478 | Fuente: | Developments in the Built Environment [EISSN 2666-1659], v. 19, (Octubre 2024) |
Colección: | Artículos |
Citas SCOPUSTM
1
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 17-nov-2024
Visitas
37
actualizado el 28-sep-2024
Descargas
25
actualizado el 28-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.