Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/131186
Título: Enhancing the maintenance strategy and cost in systems with surrogate assisted multiobjective evolutionary algorithms
Autores/as: Greiner Sánchez, David Juan 
Cacereño Ibáñez, Andrés 
Clasificación UNESCO: 330506 Ingeniería civil
330411 Diseño de sistemas de calculo
Palabras clave: Availability
Digital Twin (Dt)
Evolutionary Algorithms (Ea)
Maintenance
Multiobjective Optimization, et al.
Fecha de publicación: 2024
Publicación seriada: Developments in the Built Environment 
Resumen: Digital twins need efficient methodologies to design maintenance strategies for decision-making purposes. Recently, a methodology coupling computational simulation and multiobjective evolutionary algorithms has been proposed for developing maintenance strategies consisting in assigning times for preventive maintenance activities and designing the layout of components of a system, minimizing the unavailability of the system and the strategy cost. Here, surrogate assisted evolutionary algorithms (SAEAs) enhance the multiobjective optimization and improve the drawback of the computational cost of the maintenance strategy assessment based on discrete simulation. Several Kriging surrogates were tested. Two industrial test cases are handled in the experimental section, where the methodology succeed in obtaining nondominated designs improving previous benchmarks, and enhancing state-of-the-art multiobjective optimizers, with up to an order of magnitude in terms of the number of fitness function evaluations. Results show that using multiobjective SAEAs in the development of optimal maintenance strategies could foster and improve digital twins operations.
URI: http://hdl.handle.net/10553/131186
DOI: 10.1016/j.dibe.2024.100478
Fuente: Developments in the Built Environment [EISSN 2666-1659], v. 19, (Octubre 2024)
Colección:Artículos
Adobe PDF (3,83 MB)
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

37
actualizado el 28-sep-2024

Descargas

25
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.