Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/131186
Campo DC Valoridioma
dc.contributor.authorGreiner Sánchez, David Juan-
dc.contributor.authorCacereño Ibáñez, Andrés-
dc.date.accessioned2024-06-25T08:28:32Z-
dc.date.available2024-06-25T08:28:32Z-
dc.date.issued2024-
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/131186-
dc.description.abstractDigital twins need efficient methodologies to design maintenance strategies for decision-making purposes. Recently, a methodology coupling computational simulation and multiobjective evolutionary algorithms has been proposed for developing maintenance strategies consisting in assigning times for preventive maintenance activities and designing the layout of components of a system, minimizing the unavailability of the system and the strategy cost. Here, surrogate assisted evolutionary algorithms (SAEAs) enhance the multiobjective optimization and improve the drawback of the computational cost of the maintenance strategy assessment based on discrete simulation. Several Kriging surrogates were tested. Two industrial test cases are handled in the experimental section, where the methodology succeed in obtaining nondominated designs improving previous benchmarks, and enhancing state-of-the-art multiobjective optimizers, with up to an order of magnitude in terms of the number of fitness function evaluations. Results show that using multiobjective SAEAs in the development of optimal maintenance strategies could foster and improve digital twins operations.-
dc.languageeng-
dc.relation.ispartofDevelopments in the Built Environment-
dc.sourceDevelopments in the Built Environment [EISSN 2666-1659], v. 19, (Octubre 2024)-
dc.subject330506 Ingeniería civil-
dc.subject330411 Diseño de sistemas de calculo-
dc.subject.otherAvailability-
dc.subject.otherDigital Twin (Dt)-
dc.subject.otherEvolutionary Algorithms (Ea)-
dc.subject.otherMaintenance-
dc.subject.otherMultiobjective Optimization-
dc.subject.otherReliability-
dc.subject.otherSurrogate Assisted Evolutionary Algorithms (Saea)-
dc.subject.otherSurrogates-
dc.titleEnhancing the maintenance strategy and cost in systems with surrogate assisted multiobjective evolutionary algorithms-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1016/j.dibe.2024.100478-
dc.identifier.scopus85195266781-
dc.identifier.isi001251552900001-
dc.contributor.orcid0000-0002-4132-7144-
dc.contributor.orcid0000-0002-3947-185X-
dc.contributor.authorscopusid56268125800-
dc.contributor.authorscopusid55027233000-
dc.identifier.eissn2666-1659-
dc.relation.volume19-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngid59313207-
dc.contributor.daisngid59314659-
dc.description.numberofpages13-
dc.utils.revision-
dc.contributor.wosstandardWOS:Greiner, D-
dc.contributor.wosstandardWOS:Cacereño, A-
dc.date.coverdateOctubre 2024-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-ING-
dc.description.sjr1,374-
dc.description.jcr8,2-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4132-7144-
crisitem.author.orcid0000-0002-3947-185X-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameGreiner Sánchez, David Juan-
crisitem.author.fullNameCacereño Ibáñez, Andrés-
Colección:Artículos
Adobe PDF (3,83 MB)
Vista resumida

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

37
actualizado el 28-sep-2024

Descargas

25
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.