Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130964
Título: A fuzzy stochastic multi-criteria model for the selection of urban pervious pavements
Autores/as: Jato-Espino, Daniel
Rodriguez-Hernandez, Jorge
Andres Valeri, Valerio Carlos 
Ballester-Muñoz, Francisco
Clasificación UNESCO: 330506 Ingeniería civil
Palabras clave: AHP
Fuzzy sets
MIVES
Monte Carlo methods
Multi-criteria decision making, et al.
Fecha de publicación: 2014
Publicación seriada: Expert Systems with Applications 
Resumen: Multi-criteria decision making methods (MCDM) have been widely used throughout the last years to assist project contractors in selection processes related to the construction field. Sustainable urban drainage systems (SUDS) are an especially suitable discipline to implement these techniques, since they involve important impacts on each branch of sustainability: economy, environment and society. Considering that pervious pavements constitute an efficient solution to manage urban stormwater runoff as a source control system, this paper presents a multi-criteria approach based on the Integrated Value Model for Sustainable Assessments (MIVES) method to facilitate their proper selection. Given the lack of accurate information to shape the behavior of the alternatives regarding some of the criteria defining the decision-making environment, a series of variables are modeled by executing stochastic simulations based on the Monte Carlo methods. Additionally, a group of ten experts from various sectors related to water management was requested to provide their opinions about the importance of the set of selected criteria, according to the comparison levels of the Analytic Hierarchy Process (AHP). These judgments are converted into triangular fuzzy numbers, in order to capture the vagueness that human attitude entails when making judgments. A case of study in which the three major types of pervious pavements (porous asphalt, porous concrete and interlocking concrete pavers) are evaluated is presented to demonstrate the potential of the model. © 2014 Elsevier Ltd. All rights reserved.
URI: http://hdl.handle.net/10553/130964
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2014.05.008
Fuente: Expert Systems with Applications [ISSN 0957-4174], v. 41 (15), p. 6807-6817, (Noviembre 2014)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

76
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

67
actualizado el 15-dic-2024

Visitas

29
actualizado el 03-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.