Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/130790
DC FieldValueLanguage
dc.contributor.authorFernández-López, Pablo-
dc.contributor.authorGarcía Baez, Patricio-
dc.contributor.authorCabrera-Leon, Ylermi-
dc.contributor.authorProchazka, Ales-
dc.contributor.authorSuárez Araujo, Carmen Paz-
dc.date.accessioned2024-06-07T12:51:00Z-
dc.date.available2024-06-07T12:51:00Z-
dc.date.issued2023-
dc.identifier.issn2473-6988-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/130790-
dc.description.abstractNitric oxide (NO) is already recognized as an important signaling molecule in the brain. It diffuses easily and the nervous cell's membrane is permeable to NO. The information transmission is three-dimensional, which is different from synaptic transmission. NO operates in two different ways: Close and specific at the synapses of neurons, and as a volumetric transmitter sending signals to various targets, regardless of their anatomy, connectivity or function, when multiple nearby sources act simultaneously. These modes of operation seem to be the basis by which NO is involved in many central mechanisms of the brain, such as learning, memory formation, brain development and synaptogenesis. This work focuses on the effect of NO dynamics on the environment through which it diffuses, using automata networks. We study their implications in the formation of complex functional structures in the volume transmission (VT), which are necessary for the synchronous functional recruitment of neuronal populations. We qualitatively and quantitatively analyze the proposed model regarding these characteristics through the concepts of entropy and mutual information. The proposed deterministic model allows the incorporation of fuzzy dynamics. With that, a generalized model based on fuzzy automata networks can be provided. This allows the generation and diffusion processes of NO to be arbitrarily produced and maintained over time. This model can accommodate arbitrary processes in decision-making mechanisms and can be part of a complete formal VT framework in the brain and artificial neural networks.-
dc.languageeng-
dc.relationInvestigación en Computación Neuronal por grupo de investigación CIPERBIG-
dc.relation.ispartofAims Mathematics-
dc.sourceAims Mathematics [2473-6988], v. 8 (12), p. 30142-30181, (2023)-
dc.subject120304 Inteligencia artificial-
dc.subject.otherDiffusion-
dc.subject.otherNitric Oxide Dynamics-
dc.subject.otherVolume Transmission-
dc.subject.otherAutomata Network-
dc.subject.otherMathematical Modeling-
dc.titleModeling the implications of nitric oxide dynamics on information transmission: An automata networks approach-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.3934/math.20231541-
dc.identifier.isi001133603500087-
dc.identifier.eissn2473-6988-
dc.description.lastpage30181-
dc.identifier.issue12-
dc.description.firstpage30142-
dc.relation.volume8-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngid48944046-
dc.contributor.daisngid55234006-
dc.contributor.daisngid1716691-
dc.contributor.daisngid32213470-
dc.contributor.daisngid50240710-
dc.description.numberofpages40-
dc.utils.revisionNo-
dc.contributor.wosstandardWOS:Fernández-López, P-
dc.contributor.wosstandardWOS:Báez, PG-
dc.contributor.wosstandardWOS:Cabrera-León, Y-
dc.contributor.wosstandardWOS:Procházka, A-
dc.contributor.wosstandardWOS:Suárez-Araujo, CP-
dc.date.coverdate2023-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
dc.description.sjr0,456-
dc.description.jcr2,2-
dc.description.sjrqQ2-
dc.description.jcrqQ1-
dc.description.esciESCI-
dc.description.miaricds8,2-
item.fulltextCon texto completo-
item.grantfulltextrestricted-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-2135-6095-
crisitem.author.orcid0000-0002-9973-5319-
crisitem.author.orcid0000-0001-5709-2274-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameFernández López, Pablo Carmelo-
crisitem.author.fullNameGarcía Baez, Patricio-
crisitem.author.fullNameCabrera León, Ylermi-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
Appears in Collections:Artículos
Unknown (6,33 MB)
Show simple item record

Page view(s)

139
checked on Jul 6, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.