Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/130721
DC FieldValueLanguage
dc.contributor.authorPérez García, Ámbaren_US
dc.contributor.authorPaoletti, Mercedes E.en_US
dc.contributor.authorHaut, Juan M.en_US
dc.contributor.authorLópez Feliciano, José Franciscoen_US
dc.date.accessioned2024-05-29T12:49:08Z-
dc.date.available2024-05-29T12:49:08Z-
dc.date.issued2023en_US
dc.identifier.issn1545-598Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/130721-
dc.description.abstractNeural networks (NNs) have gained importance in hyperspectral image (HSI) segmentation for earth observation (EO) due to their unparalleled data-driven feature extraction capability. However, in many real-life situations, ground truth is not available, and the performance of unsupervised NNs is still susceptible to enhancement. To overcome this challenge, this letter presents a new loss function to improve the performance of unsupervised HSI segmentation models. The spectral loss function, $Sl$ , which can be included in different models, is based on the purity of the unmixing endmembers and the spectral similarity of the clusters provided by the NN to determine the classes. It is incorporated into a 3-D convolutional autoencoder (AE) to validate its performance on four standard HSI benchmarks. Furthermore, its performance has been qualitatively examined in a real case study, an oil spill without ground truth. The results show that $Sl$ is a breakthrough in unsupervised HS segmentation, obtaining the best overall performance and highlighting the importance of spectral signatures. Additionally, the dimensional reduction is also vital in compacting the spectral information, which facilitates its segmentation. The source code is available at https://github.com/mhaut/HSI-3DSpLoss.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Geoscience and Remote Sensing Lettersen_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherAutoencoder (AE)en_US
dc.subject.otherhyperspectral images (HSIs)en_US
dc.subject.othersemantic segmentationen_US
dc.subject.otherunsupervised learningen_US
dc.titleNovel Spectral Loss Function for Unsupervised Hyperspectral Image Segmentationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LGRS.2023.3288809en_US
dc.identifier.scopus2-s2.0-85163464975-
dc.contributor.orcid0000-0002-2943-6348-
dc.contributor.orcid0000-0003-1030-3729-
dc.contributor.orcid0000-0001-6701-961X-
dc.contributor.orcid0000-0002-6304-2801-
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,248
dc.description.jcr4,8
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,7
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-2943-6348-
crisitem.author.orcid0000-0002-6304-2801-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePérez García, Ámbar-
crisitem.author.fullNameLópez Feliciano, José Francisco-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.