Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/130721
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pérez García, Ámbar | en_US |
dc.contributor.author | Paoletti, Mercedes E. | en_US |
dc.contributor.author | Haut, Juan M. | en_US |
dc.contributor.author | López Feliciano, José Francisco | en_US |
dc.date.accessioned | 2024-05-29T12:49:08Z | - |
dc.date.available | 2024-05-29T12:49:08Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.issn | 1545-598X | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/130721 | - |
dc.description.abstract | Neural networks (NNs) have gained importance in hyperspectral image (HSI) segmentation for earth observation (EO) due to their unparalleled data-driven feature extraction capability. However, in many real-life situations, ground truth is not available, and the performance of unsupervised NNs is still susceptible to enhancement. To overcome this challenge, this letter presents a new loss function to improve the performance of unsupervised HSI segmentation models. The spectral loss function, $Sl$ , which can be included in different models, is based on the purity of the unmixing endmembers and the spectral similarity of the clusters provided by the NN to determine the classes. It is incorporated into a 3-D convolutional autoencoder (AE) to validate its performance on four standard HSI benchmarks. Furthermore, its performance has been qualitatively examined in a real case study, an oil spill without ground truth. The results show that $Sl$ is a breakthrough in unsupervised HS segmentation, obtaining the best overall performance and highlighting the importance of spectral signatures. Additionally, the dimensional reduction is also vital in compacting the spectral information, which facilitates its segmentation. The source code is available at https://github.com/mhaut/HSI-3DSpLoss. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Geoscience and Remote Sensing Letters | en_US |
dc.subject | 220990 Tratamiento digital. Imágenes | en_US |
dc.subject.other | Autoencoder (AE) | en_US |
dc.subject.other | hyperspectral images (HSIs) | en_US |
dc.subject.other | semantic segmentation | en_US |
dc.subject.other | unsupervised learning | en_US |
dc.title | Novel Spectral Loss Function for Unsupervised Hyperspectral Image Segmentation | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/LGRS.2023.3288809 | en_US |
dc.identifier.scopus | 2-s2.0-85163464975 | - |
dc.contributor.orcid | 0000-0002-2943-6348 | - |
dc.contributor.orcid | 0000-0003-1030-3729 | - |
dc.contributor.orcid | 0000-0001-6701-961X | - |
dc.contributor.orcid | 0000-0002-6304-2801 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 1,248 | |
dc.description.jcr | 4,8 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,7 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0002-2943-6348 | - |
crisitem.author.orcid | 0000-0002-6304-2801 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Pérez García, Ámbar | - |
crisitem.author.fullName | López Feliciano, José Francisco | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.