Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/130669
DC FieldValueLanguage
dc.contributor.authorSegura, C.A.L.en_US
dc.date.accessioned2024-05-27T09:48:00Z-
dc.date.available2024-05-27T09:48:00Z-
dc.date.issued2024en_US
dc.identifier.issn2169-3536en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/130669-
dc.description.abstractThe experimental identification of an unknown system, and the blind system identification (BSI) methods, allows engineers to establish mathematical models that represent the real system behavior. However, when the system operates in a non-stationary environments influenced by external disturbances, models with adaptive properties are required for predicting the real-time domain response. This study defines and analyzes in detail two system identification methods. The first method, which operates offline and requires post-processing, is mathematically defined to achieve the highest level of automation. It is based on sine sweep theory and involves conducting long-term experiments on a real system to determine its frequency domain properties. The second method, which operates online, employs computational learning theory and information theory to predict the system response through online learning. This modern approach uses convex optimization to obtain the optimal parameters of a time-lagged recurrent network (TLRN) in each iteration, which incorporates, among other features, a gamma filter as a mapper. This iterative online method was mathematically described addressing stability, convergence, and disturbances issues.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Accessen_US
dc.sourceIeee Access [ISSN 2169-3536] ,v. 12, p. 56033-56041, (2024)en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject330417 Sistemas en tiempo realen_US
dc.subject.otherAsymptotic Trackingen_US
dc.subject.otherAdaptive Modelsen_US
dc.subject.otherOnline Learningen_US
dc.subject.otherArtificial Neural Networksen_US
dc.subject.otherTime-Lagged Recurrent Network (Tlrn)en_US
dc.subject.otherRecurrent Neural Network (Rnn)en_US
dc.titleIncorporating Recurrent Networks for Online System Identification Alongside Traditional Sine-Sweep Experimentsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2024.3385236en_US
dc.identifier.isi001208017500001-
dc.description.lastpage56041en_US
dc.description.firstpage56033en_US
dc.relation.volume12en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages9en_US
dc.utils.revisionen_US
dc.date.coverdate2024en_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,96
dc.description.jcr3,9
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,4
item.grantfulltextopen-
item.fulltextCon texto completo-
Appears in Collections:Artículos
Adobe PDF (1,67 MB)
Show simple item record

Page view(s)

42
checked on Nov 9, 2024

Download(s)

45
checked on Nov 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.