Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/130598
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mendonca, Fabio | en_US |
dc.contributor.author | Mostafa, Sheikh Shanawaz | en_US |
dc.contributor.author | Morgado-Dias, Fernando | en_US |
dc.contributor.author | Azevedo, Joaquim Amandio | en_US |
dc.contributor.author | Ravelo-Garcia, Antonio G. | en_US |
dc.contributor.author | Navarro-Mesa, Juan L. | en_US |
dc.date.accessioned | 2024-05-21T07:49:06Z | - |
dc.date.available | 2024-05-21T07:49:06Z | - |
dc.date.issued | 2024 | en_US |
dc.identifier.issn | 2079-9292 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/130598 | - |
dc.description.abstract | Traditional methods for water-level measurement usually employ permanent structures, such as a scale built into the water system, which is costly and laborious and can wash away with water. This research proposes a low-cost, automatic water-level estimator that can appraise the level without disturbing water flow or affecting the environment. The estimator was developed for urban areas of a volcanic island water channel, using machine learning to evaluate images captured by a low-cost remote monitoring system. For this purpose, images from over one year were collected. For better performance, captured images were processed by converting them to a proposed color space, named HLE, composed of hue, lightness, and edge. Multiple residual neural network architectures were examined. The best-performing model was ResNeXt, which achieved a mean absolute error of 1.14 cm using squeeze and excitation and data augmentation. An explainability analysis was carried out for transparency and a visual explanation. In addition, models were developed to predict water levels. Three models successfully forecasted the subsequent water levels for 10, 60, and 120 min, with mean absolute errors of 1.76 cm, 2.09 cm, and 2.34 cm, respectively. The models could follow slow and fast transitions, leading to a potential flooding risk-assessment mechanism. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Electronics (Switzerland) | en_US |
dc.source | Electronics (Switzerland) [ISSN 2079-9292], v. 13, n. 6, 1145 (Marzo 2024) | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Camera Images | en_US |
dc.subject.other | Water-Level Measurement | en_US |
dc.subject.other | Image Processing | en_US |
dc.subject.other | Deep Learning | en_US |
dc.subject.other | Water Stream Channel | en_US |
dc.subject.other | Volcanic Islands | en_US |
dc.title | Noncontact Automatic Water-Level Assessment and Prediction in an Urban Water Stream Channel of a Volcanic Island Using Deep Learning | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/electronics13061145 | en_US |
dc.identifier.scopus | 85188779526 | - |
dc.identifier.isi | 001191775200001 | - |
dc.contributor.orcid | 0000-0002-5107-3248 | - |
dc.contributor.orcid | 0000-0002-7677-0971 | - |
dc.contributor.orcid | 0000-0001-7334-3993 | - |
dc.contributor.orcid | 0000-0002-9060-7476 | - |
dc.contributor.orcid | 0000-0002-8512-965X | - |
dc.contributor.orcid | 0000-0003-3860-3424 | - |
dc.contributor.authorscopusid | 57195946416 | - |
dc.contributor.authorscopusid | 55489640900 | - |
dc.contributor.authorscopusid | 7102398975 | - |
dc.contributor.authorscopusid | 9243995600 | - |
dc.contributor.authorscopusid | 9634135600 | - |
dc.contributor.authorscopusid | 9634488300 | - |
dc.identifier.eissn | 2079-9292 | - |
dc.identifier.issue | 6 | - |
dc.relation.volume | 13 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 136490 | - |
dc.contributor.daisngid | 1060531 | - |
dc.contributor.daisngid | 15109732 | - |
dc.contributor.daisngid | 56579860 | - |
dc.contributor.daisngid | 54272227 | - |
dc.contributor.daisngid | 954063 | - |
dc.description.numberofpages | 22 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Mendonça, F | - |
dc.contributor.wosstandard | WOS:Mostafa, SS | - |
dc.contributor.wosstandard | WOS:Morgado-Dias, F | - |
dc.contributor.wosstandard | WOS:Azevedo, JA | - |
dc.contributor.wosstandard | WOS:Ravelo-García, AG | - |
dc.contributor.wosstandard | WOS:Navarro-Mesa, JL | - |
dc.date.coverdate | Marzo 2024 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,644 | - |
dc.description.jcr | 2,9 | - |
dc.description.sjrq | Q2 | - |
dc.description.jcrq | Q2 | - |
dc.description.scie | SCIE | - |
dc.description.miaricds | 10,5 | - |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.orcid | 0000-0003-3860-3424 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
crisitem.author.fullName | Navarro Mesa, Juan Luis | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.