Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/130598
DC FieldValueLanguage
dc.contributor.authorMendonca, Fabioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorAzevedo, Joaquim Amandioen_US
dc.contributor.authorRavelo-Garcia, Antonio G.en_US
dc.contributor.authorNavarro-Mesa, Juan L.en_US
dc.date.accessioned2024-05-21T07:49:06Z-
dc.date.available2024-05-21T07:49:06Z-
dc.date.issued2024en_US
dc.identifier.issn2079-9292en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/130598-
dc.description.abstractTraditional methods for water-level measurement usually employ permanent structures, such as a scale built into the water system, which is costly and laborious and can wash away with water. This research proposes a low-cost, automatic water-level estimator that can appraise the level without disturbing water flow or affecting the environment. The estimator was developed for urban areas of a volcanic island water channel, using machine learning to evaluate images captured by a low-cost remote monitoring system. For this purpose, images from over one year were collected. For better performance, captured images were processed by converting them to a proposed color space, named HLE, composed of hue, lightness, and edge. Multiple residual neural network architectures were examined. The best-performing model was ResNeXt, which achieved a mean absolute error of 1.14 cm using squeeze and excitation and data augmentation. An explainability analysis was carried out for transparency and a visual explanation. In addition, models were developed to predict water levels. Three models successfully forecasted the subsequent water levels for 10, 60, and 120 min, with mean absolute errors of 1.76 cm, 2.09 cm, and 2.34 cm, respectively. The models could follow slow and fast transitions, leading to a potential flooding risk-assessment mechanism.en_US
dc.languageengen_US
dc.relation.ispartofElectronics (Switzerland)en_US
dc.sourceElectronics (Switzerland) [ISSN 2079-9292], v. 13, n. 6, 1145 (Marzo 2024)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherCamera Imagesen_US
dc.subject.otherWater-Level Measurementen_US
dc.subject.otherImage Processingen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherWater Stream Channelen_US
dc.subject.otherVolcanic Islandsen_US
dc.titleNoncontact Automatic Water-Level Assessment and Prediction in an Urban Water Stream Channel of a Volcanic Island Using Deep Learningen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics13061145en_US
dc.identifier.scopus85188779526-
dc.identifier.isi001191775200001-
dc.contributor.orcid0000-0002-5107-3248-
dc.contributor.orcid0000-0002-7677-0971-
dc.contributor.orcid0000-0001-7334-3993-
dc.contributor.orcid0000-0002-9060-7476-
dc.contributor.orcid0000-0002-8512-965X-
dc.contributor.orcid0000-0003-3860-3424-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid7102398975-
dc.contributor.authorscopusid9243995600-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid9634488300-
dc.identifier.eissn2079-9292-
dc.identifier.issue6-
dc.relation.volume13en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid136490-
dc.contributor.daisngid1060531-
dc.contributor.daisngid15109732-
dc.contributor.daisngid56579860-
dc.contributor.daisngid54272227-
dc.contributor.daisngid954063-
dc.description.numberofpages22en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mendonça, F-
dc.contributor.wosstandardWOS:Mostafa, SS-
dc.contributor.wosstandardWOS:Morgado-Dias, F-
dc.contributor.wosstandardWOS:Azevedo, JA-
dc.contributor.wosstandardWOS:Ravelo-García, AG-
dc.contributor.wosstandardWOS:Navarro-Mesa, JL-
dc.date.coverdateMarzo 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,644-
dc.description.jcr2,9-
dc.description.sjrqQ2-
dc.description.jcrqQ2-
dc.description.scieSCIE-
dc.description.miaricds10,5-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.orcid0000-0003-3860-3424-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
crisitem.author.fullNameNavarro Mesa, Juan Luis-
Appears in Collections:Artículos
Adobe PDF (11,43 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.