Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/130597
Title: Fractional quantum oscillator and disorder in the vibrational spectra
Authors: Stephanovich, V. A.
Kirichenko, E. V.
Dugaev, V. K.
Sauco, Jackie Harjani
López Brito, Belén 
UNESCO Clasification: 12 Matemáticas
Issue Date: 2022
Journal: Scientific Reports 
Abstract: We study the role of disorder in the vibration spectra of molecules and atoms in solids. This disorder may be described phenomenologically by a fractional generalization of ordinary quantum-mechanical oscillator problem. To be specific, this is accomplished by the introduction of a so-called fractional Laplacian (Riesz fractional derivative) to the Scrödinger equation with three-dimensional (3D) quadratic potential. To solve the obtained 3D spectral problem, we pass to the momentum space, where the problem simplifies greatly as fractional Laplacian becomes simply kμ, k is a modulus of the momentum vector and μ is Lévy index, characterizing the degree of disorder. In this case, μ→ 0 corresponds to the strongest disorder, while μ→ 2 to the weakest so that the case μ= 2 corresponds to “ordinary” (i.e. that without fractional derivatives) 3D quantum harmonic oscillator. Combining analytical (variational) and numerical methods, we have shown that in the fractional (disordered) 3D oscillator problem, the famous orbital momentum degeneracy is lifted so that its energy starts to depend on orbital quantum number l. These features can have a strong impact on the physical properties of many solids, ranging from multiferroics to oxide heterostructures, which, in turn, are usable in modern microelectronic devices.
URI: http://hdl.handle.net/10553/130597
ISSN: 2045-2322
DOI: 10.1038/s41598-022-16597-2
Appears in Collections:Artículos
Adobe PDF (2,18 MB)
Show full item record

SCOPUSTM   
Citations

2
checked on Nov 10, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 10, 2024

Page view(s)

56
checked on Oct 5, 2024

Download(s)

25
checked on Oct 5, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.