Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/130597
DC FieldValueLanguage
dc.contributor.authorStephanovich, V. A.en_US
dc.contributor.authorKirichenko, E. V.en_US
dc.contributor.authorDugaev, V. K.en_US
dc.contributor.authorSauco, Jackie Harjanien_US
dc.contributor.authorLópez Brito, Belénen_US
dc.date.accessioned2024-05-21T07:41:21Z-
dc.date.available2024-05-21T07:41:21Z-
dc.date.issued2022en_US
dc.identifier.issn2045-2322en_US
dc.identifier.urihttp://hdl.handle.net/10553/130597-
dc.description.abstractWe study the role of disorder in the vibration spectra of molecules and atoms in solids. This disorder may be described phenomenologically by a fractional generalization of ordinary quantum-mechanical oscillator problem. To be specific, this is accomplished by the introduction of a so-called fractional Laplacian (Riesz fractional derivative) to the Scrödinger equation with three-dimensional (3D) quadratic potential. To solve the obtained 3D spectral problem, we pass to the momentum space, where the problem simplifies greatly as fractional Laplacian becomes simply kμ, k is a modulus of the momentum vector and μ is Lévy index, characterizing the degree of disorder. In this case, μ→ 0 corresponds to the strongest disorder, while μ→ 2 to the weakest so that the case μ= 2 corresponds to “ordinary” (i.e. that without fractional derivatives) 3D quantum harmonic oscillator. Combining analytical (variational) and numerical methods, we have shown that in the fractional (disordered) 3D oscillator problem, the famous orbital momentum degeneracy is lifted so that its energy starts to depend on orbital quantum number l. These features can have a strong impact on the physical properties of many solids, ranging from multiferroics to oxide heterostructures, which, in turn, are usable in modern microelectronic devices.en_US
dc.languageengen_US
dc.relation.ispartofScientific Reportsen_US
dc.subject12 Matemáticasen_US
dc.titleFractional quantum oscillator and disorder in the vibrational spectraen_US
dc.typeArticleen_US
dc.identifier.doi10.1038/s41598-022-16597-2en_US
dc.identifier.scopus2-s2.0-85134615987-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue1-
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,973
dc.description.jcr4,6
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,5
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-1484-0890-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameLópez Brito, María Belén-
Appears in Collections:Artículos
Adobe PDF (2,18 MB)
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 10, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 10, 2024

Page view(s)

56
checked on Oct 5, 2024

Download(s)

25
checked on Oct 5, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.