Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/130559
Título: | An Edge Computing Application of Fundamental Frequency Extraction for Ocean Currents and Waves | Autores/as: | Hernández Gonzalez, Nieves G. Montiel Caminos, Juan Sosa González, Carlos Javier Montiel-Nelson, Juan A. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Parameter-Estimation Algorithms Frequency Parameters Extraction Ocean Tides And Waves Underwater Sensors, et al. |
Fecha de publicación: | 2024 | Publicación seriada: | Sensors (Switzerland) | Resumen: | This paper describes the design and optimization of a smart algorithm based on artificial intelligence to increase the accuracy of an ocean water current meter. The main purpose of water current meters is to obtain the fundamental frequency of the ocean waves and currents. The limiting factor in those underwater applications is power consumption and that is the reason to use only ultra-low power microcontrollers. On the other hand, nowadays extraction algorithms assume that the processed signal is defined in a fixed bandwidth. In our approach, belonging to the edge computing research area, we use a deep neural network to determine the narrow bandwidth for filtering the fundamental frequency of the ocean waves and currents on board instruments. The proposed solution is implemented on an 8 MHz ARM Cortex-M0+ microcontroller without a floating point unit requiring only 9.54 ms in the worst case based on a deep neural network solution. Compared to a greedy algorithm in terms of computational effort, our worst-case approach is 1.81 times faster than a fast Fourier transform with a length of 32 samples. The proposed solution is 2.33 times better when an artificial neural network approach is adopted. | URI: | http://hdl.handle.net/10553/130559 | ISSN: | 1424-8220 | DOI: | 10.3390/s24051358 | Fuente: | Sensors [ISSN 1424-8220], v. 24 (5), (Marzo 2024) |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 15-dic-2024
Visitas
72
actualizado el 14-dic-2024
Descargas
1
actualizado el 14-dic-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.