Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130559
Título: An Edge Computing Application of Fundamental Frequency Extraction for Ocean Currents and Waves
Autores/as: Hernández Gonzalez, Nieves G.
Montiel Caminos, Juan 
Sosa González, Carlos Javier 
Montiel-Nelson, Juan A. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Parameter-Estimation
Algorithms
Frequency Parameters Extraction
Ocean Tides And Waves
Underwater Sensors, et al.
Fecha de publicación: 2024
Publicación seriada: Sensors (Switzerland) 
Resumen: This paper describes the design and optimization of a smart algorithm based on artificial intelligence to increase the accuracy of an ocean water current meter. The main purpose of water current meters is to obtain the fundamental frequency of the ocean waves and currents. The limiting factor in those underwater applications is power consumption and that is the reason to use only ultra-low power microcontrollers. On the other hand, nowadays extraction algorithms assume that the processed signal is defined in a fixed bandwidth. In our approach, belonging to the edge computing research area, we use a deep neural network to determine the narrow bandwidth for filtering the fundamental frequency of the ocean waves and currents on board instruments. The proposed solution is implemented on an 8 MHz ARM Cortex-M0+ microcontroller without a floating point unit requiring only 9.54 ms in the worst case based on a deep neural network solution. Compared to a greedy algorithm in terms of computational effort, our worst-case approach is 1.81 times faster than a fast Fourier transform with a length of 32 samples. The proposed solution is 2.33 times better when an artificial neural network approach is adopted.
URI: http://hdl.handle.net/10553/130559
ISSN: 1424-8220
DOI: 10.3390/s24051358
Fuente: Sensors [ISSN 1424-8220], v. 24 (5), (Marzo 2024)
Colección:Artículos
Adobe PDF (2,34 MB)
Vista completa

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 15-dic-2024

Visitas

72
actualizado el 14-dic-2024

Descargas

1
actualizado el 14-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.