Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/130557
DC FieldValueLanguage
dc.contributor.authorTravieso-González, Carlos M.-
dc.contributor.authorCelada Bernal, Sergio-
dc.contributor.authorLomoschitz, Alejandro-
dc.contributor.authorCabrera-Quintero, Fidel-
dc.date.accessioned2024-05-20T13:48:16Z-
dc.date.available2024-05-20T13:48:16Z-
dc.date.issued2024-
dc.identifier.issn2405-8440-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/130557-
dc.description.abstractForecasting is of great importance in the field of renewable energies because it allows us to know the quantity of energy that can be produced, and thus, to have an efficient management of energy sources. However, determining which prediction system is more adequate is very complex, as each energy infrastructure is different. This work studies the influence of some variables when making predictions using ensemble methods for different locations. In particular, the proposal analyzes the influence of the aspects: the variation of the sampling frequency of solar panel systems, the influence of the type of neural network architecture and the number of ensemble method blocks for each model. Following comprehensive experimentation across multiple locations, our study has identified the most effective solar energy prediction model tailored to the specific conditions of each energy infrastructure. The results offer a decisive framework for selecting the optimal system for accurate and efficient energy forecasting. The key point is the use of short time intervals, which is independent of type of prediction model and of their ensemble method.-
dc.languageeng-
dc.relation.ispartofHeliyon-
dc.sourceHeliyon[ISSN 2405-8440],v. 10 (9), (Mayo 2024)-
dc.subject3307 Tecnología electrónica-
dc.subject.otherEnsemble Methods-
dc.subject.otherMachine Learning-
dc.subject.otherNeural Networks-
dc.subject.otherRenewable Energy-
dc.subject.otherSolar Energy-
dc.titleAnalysis of variables to determine their influence on renewable energy forecasting using ensemble methods-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1016/j.heliyon.2024.e30002-
dc.identifier.scopus85192494487-
dc.identifier.isi001239879100001-
dc.contributor.orcid0000-0002-4621-2768-
dc.contributor.orcid0000-0002-6078-2716-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57219115631-
dc.contributor.authorscopusid58531706300-
dc.contributor.authorscopusid6507150380-
dc.contributor.authorscopusid57850795100-
dc.identifier.eissn2405-8440-
dc.identifier.issue9-
dc.relation.volume10-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages20-
dc.utils.revision-
dc.contributor.wosstandardWOS:Travieso-Gonzalez, CM-
dc.contributor.wosstandardWOS:Celada-Bernal, S-
dc.contributor.wosstandardWOS:Lomoschitz, A-
dc.contributor.wosstandardWOS:Cabrera-Quintero, F-
dc.date.coverdateMayo 2024-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr0,617-
dc.description.jcr4,0-
dc.description.sjrqQ1-
dc.description.jcrqQ2-
dc.description.esciESCI-
dc.description.miaricds10,3-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Geología Aplicada y Regional-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0002-6078-2716-
crisitem.author.orcid0000-0002-8812-0351-
crisitem.author.orcid0000-0003-0948-0840-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameCelada Bernal, Sergio-
crisitem.author.fullNameLomoschitz Mora-Figueroa, Alejandro-
crisitem.author.fullNameCabrera Quintero, Fidel-
Appears in Collections:Artículos
Adobe PDF (9,69 MB)
Show simple item record

Page view(s)

85
checked on Nov 9, 2024

Download(s)

35
checked on Nov 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.