Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/130557
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Travieso-González, Carlos M. | - |
dc.contributor.author | Celada Bernal, Sergio | - |
dc.contributor.author | Lomoschitz, Alejandro | - |
dc.contributor.author | Cabrera-Quintero, Fidel | - |
dc.date.accessioned | 2024-05-20T13:48:16Z | - |
dc.date.available | 2024-05-20T13:48:16Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 2405-8440 | - |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/130557 | - |
dc.description.abstract | Forecasting is of great importance in the field of renewable energies because it allows us to know the quantity of energy that can be produced, and thus, to have an efficient management of energy sources. However, determining which prediction system is more adequate is very complex, as each energy infrastructure is different. This work studies the influence of some variables when making predictions using ensemble methods for different locations. In particular, the proposal analyzes the influence of the aspects: the variation of the sampling frequency of solar panel systems, the influence of the type of neural network architecture and the number of ensemble method blocks for each model. Following comprehensive experimentation across multiple locations, our study has identified the most effective solar energy prediction model tailored to the specific conditions of each energy infrastructure. The results offer a decisive framework for selecting the optimal system for accurate and efficient energy forecasting. The key point is the use of short time intervals, which is independent of type of prediction model and of their ensemble method. | - |
dc.language | eng | - |
dc.relation.ispartof | Heliyon | - |
dc.source | Heliyon[ISSN 2405-8440],v. 10 (9), (Mayo 2024) | - |
dc.subject | 3307 Tecnología electrónica | - |
dc.subject.other | Ensemble Methods | - |
dc.subject.other | Machine Learning | - |
dc.subject.other | Neural Networks | - |
dc.subject.other | Renewable Energy | - |
dc.subject.other | Solar Energy | - |
dc.title | Analysis of variables to determine their influence on renewable energy forecasting using ensemble methods | - |
dc.type | info:eu-repo/semantics/Article | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.heliyon.2024.e30002 | - |
dc.identifier.scopus | 85192494487 | - |
dc.identifier.isi | 001239879100001 | - |
dc.contributor.orcid | 0000-0002-4621-2768 | - |
dc.contributor.orcid | 0000-0002-6078-2716 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 57219115631 | - |
dc.contributor.authorscopusid | 58531706300 | - |
dc.contributor.authorscopusid | 6507150380 | - |
dc.contributor.authorscopusid | 57850795100 | - |
dc.identifier.eissn | 2405-8440 | - |
dc.identifier.issue | 9 | - |
dc.relation.volume | 10 | - |
dc.investigacion | Ingeniería y Arquitectura | - |
dc.type2 | Artículo | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.description.numberofpages | 20 | - |
dc.utils.revision | Sí | - |
dc.contributor.wosstandard | WOS:Travieso-Gonzalez, CM | - |
dc.contributor.wosstandard | WOS:Celada-Bernal, S | - |
dc.contributor.wosstandard | WOS:Lomoschitz, A | - |
dc.contributor.wosstandard | WOS:Cabrera-Quintero, F | - |
dc.date.coverdate | Mayo 2024 | - |
dc.identifier.ulpgc | Sí | - |
dc.contributor.buulpgc | BU-TEL | - |
dc.description.sjr | 0,617 | - |
dc.description.jcr | 4,0 | - |
dc.description.sjrq | Q1 | - |
dc.description.jcrq | Q2 | - |
dc.description.esci | ESCI | - |
dc.description.miaricds | 10,3 | - |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IOCAG: Geología Aplicada y Regional | - |
crisitem.author.dept | IU de Oceanografía y Cambio Global | - |
crisitem.author.dept | Departamento de Ingeniería Civil | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.orcid | 0000-0002-6078-2716 | - |
crisitem.author.orcid | 0000-0002-8812-0351 | - |
crisitem.author.orcid | 0000-0003-0948-0840 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU de Oceanografía y Cambio Global | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
crisitem.author.fullName | Celada Bernal, Sergio | - |
crisitem.author.fullName | Lomoschitz Mora-Figueroa, Alejandro | - |
crisitem.author.fullName | Cabrera Quintero, Fidel | - |
Appears in Collections: | Artículos |
Page view(s)
85
checked on Nov 9, 2024
Download(s)
35
checked on Nov 9, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.