Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130232
Campo DC Valoridioma
dc.contributor.authorPeñate Sánchez, Adriánen_US
dc.contributor.authorPorzi, Lorenzoen_US
dc.contributor.authorMoreno-Noguer, Francescen_US
dc.date.accessioned2024-05-08T19:58:25Z-
dc.date.available2024-05-08T19:58:25Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4673-8332-5en_US
dc.identifier.urihttp://hdl.handle.net/10553/130232-
dc.description.abstractWhile recent approaches have shown that it is possible to do template matching by exhaustively scanning the parameter space, the resulting algorithms are still quite demanding. In this paper we alleviate the computational load of these algorithms by proposing an efficient approach for predicting the match ability of a template, before it is actually performed. This avoids large amounts of unnecessary computations. We learn the match ability of templates by using dense convolutional neural network descriptors that do not require ad-hoc criteria to characterize a template. By using deep learning descriptions of patches we are able to predict match ability over the whole image quite reliably. We will also show how no specific training data is required to solve problems like panorama stitching in which you usually require data from the scene in question. Due to the highly parallelizable nature of this tasks we offer an efficient technique with a negligible computational cost at test time.en_US
dc.languageengen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.sourceInternational Conference on 3D Vision, 2015, p. 353-361, (Octuber 2015)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherApproximation algorithmsen_US
dc.subject.otherApproximation methodsen_US
dc.subject.otherComputational efficiencyen_US
dc.subject.otherDetectorsen_US
dc.subject.otherPrediction algorithmsen_US
dc.subject.otherRobustnessen_US
dc.subject.otherSearch problemsen_US
dc.titleMatchability prediction for full-search template matching algorithmsen_US
dc.typeinfo:eu- repo/semantics/conferenceObjecten_US
dc.typeConference proceedingsen_US
dc.relation.conferenceInternational Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT 2015)en_US
dc.identifier.doi10.1109/3DV.2015.47en_US
dc.identifier.scopus2-s2.0-84961761040-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage361en_US
dc.description.firstpage353en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateOctober 2015en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
crisitem.event.eventsstartdate19-10-2015-
crisitem.event.eventsenddate22-10-2015-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

13
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

9
actualizado el 24-nov-2024

Visitas

71
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.