Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/130232
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Peñate Sánchez, Adrián | en_US |
dc.contributor.author | Porzi, Lorenzo | en_US |
dc.contributor.author | Moreno-Noguer, Francesc | en_US |
dc.date.accessioned | 2024-05-08T19:58:25Z | - |
dc.date.available | 2024-05-08T19:58:25Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.isbn | 978-1-4673-8332-5 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/130232 | - |
dc.description.abstract | While recent approaches have shown that it is possible to do template matching by exhaustively scanning the parameter space, the resulting algorithms are still quite demanding. In this paper we alleviate the computational load of these algorithms by proposing an efficient approach for predicting the match ability of a template, before it is actually performed. This avoids large amounts of unnecessary computations. We learn the match ability of templates by using dense convolutional neural network descriptors that do not require ad-hoc criteria to characterize a template. By using deep learning descriptions of patches we are able to predict match ability over the whole image quite reliably. We will also show how no specific training data is required to solve problems like panorama stitching in which you usually require data from the scene in question. Due to the highly parallelizable nature of this tasks we offer an efficient technique with a negligible computational cost at test time. | en_US |
dc.language | eng | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.source | International Conference on 3D Vision, 2015, p. 353-361, (Octuber 2015) | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.subject.other | Approximation algorithms | en_US |
dc.subject.other | Approximation methods | en_US |
dc.subject.other | Computational efficiency | en_US |
dc.subject.other | Detectors | en_US |
dc.subject.other | Prediction algorithms | en_US |
dc.subject.other | Robustness | en_US |
dc.subject.other | Search problems | en_US |
dc.title | Matchability prediction for full-search template matching algorithms | en_US |
dc.type | info:eu- repo/semantics/conferenceObject | en_US |
dc.type | Conference proceedings | en_US |
dc.relation.conference | International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT 2015) | en_US |
dc.identifier.doi | 10.1109/3DV.2015.47 | en_US |
dc.identifier.scopus | 2-s2.0-84961761040 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.description.lastpage | 361 | en_US |
dc.description.firstpage | 353 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | October 2015 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2876-3301 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Peñate Sánchez, Adrián | - |
crisitem.event.eventsstartdate | 19-10-2015 | - |
crisitem.event.eventsenddate | 22-10-2015 | - |
Appears in Collections: | Actas de congresos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.