Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/130232
Título: | Matchability prediction for full-search template matching algorithms | Autores/as: | Peñate Sánchez, Adrián Porzi, Lorenzo Moreno-Noguer, Francesc |
Clasificación UNESCO: | 1203 Ciencia de los ordenadores | Palabras clave: | Approximation algorithms Approximation methods Computational efficiency Detectors Prediction algorithms, et al. |
Fecha de publicación: | 2015 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Conferencia: | International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT 2015) | Resumen: | While recent approaches have shown that it is possible to do template matching by exhaustively scanning the parameter space, the resulting algorithms are still quite demanding. In this paper we alleviate the computational load of these algorithms by proposing an efficient approach for predicting the match ability of a template, before it is actually performed. This avoids large amounts of unnecessary computations. We learn the match ability of templates by using dense convolutional neural network descriptors that do not require ad-hoc criteria to characterize a template. By using deep learning descriptions of patches we are able to predict match ability over the whole image quite reliably. We will also show how no specific training data is required to solve problems like panorama stitching in which you usually require data from the scene in question. Due to the highly parallelizable nature of this tasks we offer an efficient technique with a negligible computational cost at test time. | URI: | http://hdl.handle.net/10553/130232 | ISBN: | 978-1-4673-8332-5 | DOI: | 10.1109/3DV.2015.47 | Fuente: | International Conference on 3D Vision, 2015, p. 353-361, (Octuber 2015) |
Colección: | Actas de congresos |
Citas SCOPUSTM
13
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
9
actualizado el 17-nov-2024
Visitas
71
actualizado el 31-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.