Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130231
Título: A dynamic programming approach for fast and robust object pose recognition from range images
Autores/as: Zach, Christopher
Peñate Sánchez, Adrián 
Pham, Minh Tri
Clasificación UNESCO: 1203 Ciencia de los ordenadores
Palabras clave: Three-dimensional displays
Sensors
Solid modeling
Robustness
Feature extraction, et al.
Fecha de publicación: 2015
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Publicación seriada: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 
Conferencia: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 
Resumen: Joint object recognition and pose estimation solely from range images is an important task e.g. in robotics applications and in automated manufacturing environments. The lack of color information and limitations of current commodity depth sensors make this task a challenging computer vision problem, and a standard random sampling based approach is prohibitively time-consuming. We propose to address this difficult problem by generating promising inlier sets for pose estimation by early rejection of clear outliers with the help of local belief propagation (or dynamic programming). By exploiting data-parallelism our method is fast, and we also do not rely on a computationally expensive training phase. We demonstrate state-of-the art performance on a standard dataset and illustrate our approach on challenging real sequences.
URI: http://hdl.handle.net/10553/130231
ISBN: 978-1-4673-6964-0
978-1-4673-6963-3
ISSN: 1063-6919
DOI: 10.1109/CVPR.2015.7298615
Fuente: EEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2015. [ISSN: 1063-6919], p. 196-203 (June 2015).
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

39
actualizado el 24-nov-2024

Visitas

74
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.