Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130231
Campo DC Valoridioma
dc.contributor.authorZach, Christopheren_US
dc.contributor.authorPeñate Sánchez, Adriánen_US
dc.contributor.authorPham, Minh Trien_US
dc.date.accessioned2024-05-08T19:43:35Z-
dc.date.available2024-05-08T19:43:35Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4673-6964-0en_US
dc.identifier.isbn978-1-4673-6963-3-
dc.identifier.issn1063-6919en_US
dc.identifier.urihttp://hdl.handle.net/10553/130231-
dc.description.abstractJoint object recognition and pose estimation solely from range images is an important task e.g. in robotics applications and in automated manufacturing environments. The lack of color information and limitations of current commodity depth sensors make this task a challenging computer vision problem, and a standard random sampling based approach is prohibitively time-consuming. We propose to address this difficult problem by generating promising inlier sets for pose estimation by early rejection of clear outliers with the help of local belief propagation (or dynamic programming). By exploiting data-parallelism our method is fast, and we also do not rely on a computationally expensive training phase. We demonstrate state-of-the art performance on a standard dataset and illustrate our approach on challenging real sequences.en_US
dc.languageengen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.ispartofProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognitionen_US
dc.sourceEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2015. [ISSN: 1063-6919], p. 196-203 (June 2015).en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherThree-dimensional displaysen_US
dc.subject.otherSensorsen_US
dc.subject.otherSolid modelingen_US
dc.subject.otherRobustnessen_US
dc.subject.otherFeature extractionen_US
dc.subject.otherShapeen_US
dc.titleA dynamic programming approach for fast and robust object pose recognition from range imagesen_US
dc.typeConference Paperen_US
dc.relation.conferenceIEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)en_US
dc.identifier.doi10.1109/CVPR.2015.7298615en_US
dc.identifier.scopus2-s2.0-84959212225-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage203en_US
dc.description.firstpage196en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages8en_US
dc.utils.revisionen_US
dc.date.coverdateJune 2015en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
crisitem.event.eventsstartdate18-06-2018-
crisitem.event.eventsenddate22-06-2018-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

39
actualizado el 24-nov-2024

Visitas

74
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.