Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/130231
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Zach, Christopher | en_US |
dc.contributor.author | Peñate Sánchez, Adrián | en_US |
dc.contributor.author | Pham, Minh Tri | en_US |
dc.date.accessioned | 2024-05-08T19:43:35Z | - |
dc.date.available | 2024-05-08T19:43:35Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.isbn | 978-1-4673-6964-0 | en_US |
dc.identifier.isbn | 978-1-4673-6963-3 | - |
dc.identifier.issn | 1063-6919 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/130231 | - |
dc.description.abstract | Joint object recognition and pose estimation solely from range images is an important task e.g. in robotics applications and in automated manufacturing environments. The lack of color information and limitations of current commodity depth sensors make this task a challenging computer vision problem, and a standard random sampling based approach is prohibitively time-consuming. We propose to address this difficult problem by generating promising inlier sets for pose estimation by early rejection of clear outliers with the help of local belief propagation (or dynamic programming). By exploiting data-parallelism our method is fast, and we also do not rely on a computationally expensive training phase. We demonstrate state-of-the art performance on a standard dataset and illustrate our approach on challenging real sequences. | en_US |
dc.language | eng | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.ispartof | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition | en_US |
dc.source | EEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2015. [ISSN: 1063-6919], p. 196-203 (June 2015). | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.subject.other | Three-dimensional displays | en_US |
dc.subject.other | Sensors | en_US |
dc.subject.other | Solid modeling | en_US |
dc.subject.other | Robustness | en_US |
dc.subject.other | Feature extraction | en_US |
dc.subject.other | Shape | en_US |
dc.title | A dynamic programming approach for fast and robust object pose recognition from range images | en_US |
dc.type | Conference Paper | en_US |
dc.relation.conference | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) | en_US |
dc.identifier.doi | 10.1109/CVPR.2015.7298615 | en_US |
dc.identifier.scopus | 2-s2.0-84959212225 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.description.lastpage | 203 | en_US |
dc.description.firstpage | 196 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.description.numberofpages | 8 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | June 2015 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2876-3301 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Peñate Sánchez, Adrián | - |
crisitem.event.eventsstartdate | 18-06-2018 | - |
crisitem.event.eventsenddate | 22-06-2018 | - |
Colección: | Actas de congresos |
Citas SCOPUSTM
39
actualizado el 24-nov-2024
Visitas
74
actualizado el 12-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.