Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/130189
DC FieldValueLanguage
dc.contributor.authorEneriz, Daniel-
dc.contributor.authorRodriguez-Almeida, Antonio J.-
dc.contributor.authorFabelo, Himar-
dc.contributor.authorOrtega, Samuel-
dc.contributor.authorBalea Fernandez, Francisco Javier-
dc.contributor.authorCallicó, Gustavo M.-
dc.contributor.authorMedrano, Nicolas-
dc.contributor.authorCalvo, Belen-
dc.date.accessioned2024-05-07T09:11:25Z-
dc.date.available2024-05-07T09:11:25Z-
dc.date.issued2024-
dc.identifier.issn0018-9456-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/130189-
dc.description.abstractThe development of real-time, reliable, low-cost automatic Phonocardiogram (PCG) analysis systems is critical for early detection of Cardiovascular Diseases (CVDs), especially in countries with limited access to primary health care programs. Once the raw PCG acquired by the stethoscope has been preprocessed, the first key task is its segmentation into the fundamental heart sounds. For this purpose, an optimized hardware implementation of the segmentation algorithm is essential to attain a computer-aided diagnostic system based on PCGs. This paper presents the optimization of a U-Net-based segmentation algorithm for its implementation in a low-end Field-Programmable Gate Array (FPGA) using low-resolution fixed-point data types. The optimization strategies seek to reduce the system latency while maintaining a constrained consumption of FPGA resources, aiming for a real-time response from the stethoscope data acquisition to the CVDs detection. Experimental results prove a 64% decrease in latency compared to a baseline version, a 3.9% reduction of Block Random Access Memory, which is the limiting resource of the design, and a 70% reduction in energy consumption. To the best of our knowledge, this is the first work to exhaustively study different optimization strategies for implementing a large 1D U-Net-based model, achieving real-time fully characterized performance.-
dc.languageeng-
dc.relation.ispartofIEEE Transactions on Instrumentation and Measurement-
dc.sourceIEEE Transactions on Instrumentation and Measurement[ISSN 0018-9456], (Enero 2024)-
dc.subject3314 Tecnología médica-
dc.subject.otherAdaptation Models-
dc.subject.otherAnalytical Models-
dc.subject.otherCardiovascular Diseases Detection-
dc.subject.otherComputer-Aid Diagnostic-
dc.subject.otherConvolutional Neural Networks-
dc.subject.otherDeep Learning-
dc.subject.otherEdge Ai-
dc.subject.otherEmbedded Systems-
dc.subject.otherField Programmable Gate Arrays-
dc.subject.otherFpga-
dc.subject.otherHardware-
dc.subject.otherHeart Sound Segmentation-
dc.subject.otherIntegrated Circuit Modeling-
dc.subject.otherPhonocardiography-
dc.subject.otherReal-Time Systems-
dc.titleLow-Cost FPGA Implementation of Deep Learning-based Heart Sound Segmentation for Real-Time CVDs Screening-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1109/TIM.2024.3392271-
dc.identifier.scopus85191336439-
dc.identifier.isi001216712300010-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57218215447-
dc.contributor.authorscopusid57838532200-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid58903031800-
dc.contributor.authorscopusid57221266705-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid16175729700-
dc.contributor.authorscopusid59002261300-
dc.identifier.eissn1557-9662-
dc.relation.volume73-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages16-
dc.utils.revision-
dc.contributor.wosstandardWOS:Enériz, D-
dc.contributor.wosstandardWOS:Rodriguez-Almeida, AJ-
dc.contributor.wosstandardWOS:Fabelo, H-
dc.contributor.wosstandardWOS:Ortega, S-
dc.contributor.wosstandardWOS:Balea-Fernandez, FJ-
dc.contributor.wosstandardWOS:Callico, GM-
dc.contributor.wosstandardWOS:Medrano, N-
dc.contributor.wosstandardWOS:Calvo, B-
dc.date.coverdateEnero 2024-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr1,536-
dc.description.jcr5,6-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Psicología, Sociología y Trabajo Social-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0003-2028-0858-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameBalea Fernandez, Francisco Javier-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 17, 2024

Page view(s)

70
checked on Oct 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.