Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130189
Título: Low-Cost FPGA Implementation of Deep Learning-based Heart Sound Segmentation for Real-Time CVDs Screening
Autores/as: Eneriz, Daniel
Rodriguez-Almeida, Antonio J.
Fabelo, Himar 
Ortega, Samuel 
Balea Fernandez, Francisco Javier 
Callicó, Gustavo M. 
Medrano, Nicolas
Calvo, Belen
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Adaptation Models
Analytical Models
Cardiovascular Diseases Detection
Computer-Aid Diagnostic
Convolutional Neural Networks, et al.
Fecha de publicación: 2024
Publicación seriada: IEEE Transactions on Instrumentation and Measurement 
Resumen: The development of real-time, reliable, low-cost automatic Phonocardiogram (PCG) analysis systems is critical for early detection of Cardiovascular Diseases (CVDs), especially in countries with limited access to primary health care programs. Once the raw PCG acquired by the stethoscope has been preprocessed, the first key task is its segmentation into the fundamental heart sounds. For this purpose, an optimized hardware implementation of the segmentation algorithm is essential to attain a computer-aided diagnostic system based on PCGs. This paper presents the optimization of a U-Net-based segmentation algorithm for its implementation in a low-end Field-Programmable Gate Array (FPGA) using low-resolution fixed-point data types. The optimization strategies seek to reduce the system latency while maintaining a constrained consumption of FPGA resources, aiming for a real-time response from the stethoscope data acquisition to the CVDs detection. Experimental results prove a 64% decrease in latency compared to a baseline version, a 3.9% reduction of Block Random Access Memory, which is the limiting resource of the design, and a 70% reduction in energy consumption. To the best of our knowledge, this is the first work to exhaustively study different optimization strategies for implementing a large 1D U-Net-based model, achieving real-time fully characterized performance.
URI: http://hdl.handle.net/10553/130189
ISSN: 0018-9456
DOI: 10.1109/TIM.2024.3392271
Fuente: IEEE Transactions on Instrumentation and Measurement[ISSN 0018-9456], (Enero 2024)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

4
actualizado el 22-dic-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 22-dic-2024

Visitas

70
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.